精英家教網 > 初中數學 > 題目詳情
如圖,平面直角坐標系中,直線AB與x軸,y軸分別交于A(3,0),B(0,)兩點,點C為線段AB上的一動點,過點C作CD⊥x軸于點D.
(1)求直線AB的解析式;
(2)若S梯形OBCD=,求點C的坐標;
(3)在第一象限內是否存在點P,使得以P,O,B為頂點的三角形與△OBA相似?若存在,請求出所有符合條件的點P的坐標;若不存在,請說明理由.

【答案】分析:(1)因為直線AB與x軸,y軸分別交于A(3,0),B(0,)兩點,所以可設y=kx+b,將A、B的坐標代入,利用方程組即可求出答案;
(2)因為點C為線段AB上的一動點,CD⊥x軸于點D,所以可設點C坐標為(x,x+),那么OD=x,CD=x+,利用梯形的面積公式可列出關于x的方程,解之即可,但要注意x的取值;
(3)因為∠AOB=90°,所以以P,O,B為頂點的三角形與△OBA相似需分情況探討:
當∠OBP=90°時,如圖
①若△BOP∽△OBA,則∠BOP=∠BAO=30°,BP=OB=3,P1(3,).
②若△BPO∽△OBA,則∠BPO=∠BAO=30°,OP=OB=1,P2(1,).
③過點P作OP⊥BC于點P,此時△PBO∽△OBA,∠BOP=∠BAO=30°,OP=BP,過點P作PM⊥OA于點M,∠OPM=30°,OM=OP,PM=OM,從而求得P的坐標.
④若△POB∽△OBA,則∠OBP=∠BAO=30°,∠POM=30°,所以PM=OM,P4);當∠POB=90°時,點P在x軸上,不符合要求.
解答:解:(1)設直線AB解析式為:y=kx+b,
把A,B的坐標代入得k=-,b=
所以直線AB的解析為:y=x+

(2)方法一:設點C坐標為(x,x+),那么OD=x,CD=x+
∴S梯形OBCD==x.
由題意:x=,
解得x1=2,x2=4(舍去),
∴C(2,)(1分)
方法二:∵,S梯形OBCD=,∴
由OA=OB,得∠BAO=30°,AD=CD.
∴S△ACD=CD×AD==.可得CD=
∴AD=1,OD=2.∴C(2,).

(3)當∠OBP=90°時,如圖

①若△BOP∽△BAO,
則∠BOP=∠BAO=30°,BP=OB=3,
∴P1(3,).(2分)
②若△BPO∽△BAO,
則∠BPO=∠BAO=30°,OP=OB=1.
∴P2(1,).(1分)
當∠OPB=90°時
③過點P作OP⊥BA于點P(如圖),
此時△PBO∽△OBA,∠BOP=∠BAO=30°
過點P作PM⊥OA于點M.
方法一:在Rt△PBO中,BP=OB=,
OP=BP=
∵在Rt△PMO中,∠OPM=30°,
∴OM=OP=;PM=OM=.∴P3,).
方法二:設P(x,x+),得OM=x,
PM=x+,
由∠BOP=∠BAO,得∠POM=∠ABO.
∵tan∠POM==,tan∠ABO==
x+=x,解得x=.此時P3,).
④若△POB∽△OBA(如圖),
則∠OBP=∠BAO=30°,∠POM=30度.
∴PM=OM=
∴P4,)(由對稱性也可得到點P4的坐標).
當∠POB=90°時,點P在x軸上,不符合要求.
綜合得,符合條件的點有四個,分別是:P1(3,),P2(1,),P3,),P4).
點評:本題綜合考查了用待定系數法求一次函數的解析式和相似三角形的有關知識,解決這類問題常用到分類討論、數形結合、方程和轉化等數學思想方法.
練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

精英家教網如圖,平面直角坐標系中,O為直角三角形ABC的直角頂點,∠B=30°,銳角頂點A在雙曲線y=
1x
上運動,則B點在函數解析式
 
上運動.

查看答案和解析>>

科目:初中數學 來源: 題型:

如圖,平面直角坐標系中,⊙P與x軸分別交于A、B兩點,點P的坐標為(3,-1),AB精英家教網=2
3

(1)求⊙P的半徑.
(2)將⊙P向下平移,求⊙P與x軸相切時平移的距離.

查看答案和解析>>

科目:初中數學 來源: 題型:

如圖,平面直角坐標系中,OB在x軸上,∠ABO=90°,點A的坐標為(1,2).將△AOB繞點A逆時針旋轉90°,則點O的對應點C的坐標為( 。

查看答案和解析>>

科目:初中數學 來源: 題型:

如圖:平面直角坐標系中,△ABC的三個頂點的坐標為A(a,0),B(b,0),C(0,c),且a,b,c滿足
a+2
+|b-2|+(c-b)2=0
.點D為線段OA上一動點,連接CD.
(1)判斷△ABC的形狀并說明理由;
(2)如圖,過點D作CD的垂線,過點B作BC的垂線,兩垂線交于點G,作GH⊥AB于H,求證:
S△CAD
S△DGH
=
AD
GH
;
(3)如圖,若點D到CA、CO的距離相等,E為AO的中點,且EF∥CD交y軸于點F,交CA于M.求
FC+2AE
3AM
的值.

查看答案和解析>>

科目:初中數學 來源: 題型:

如圖在平面直角坐標系中,A點坐標為(8,0),B點坐標為(0,6)C是線段AB的中點.請問在y軸上是否存在一點P,使得以P、B、C為頂點的三角形與△AOB相似?若存在,求出P點坐標;若不存在,說明理由.

查看答案和解析>>

同步練習冊答案