【題目】以點A為頂點作兩個等腰直角三角形(△ABC,△ADE),如圖1所示放置,使得一直角邊重合,連接BD,CE.
(1)說明BD=CE;
(2)延長BD,交CE于點F,求∠BFC的度數(shù);
(3)若如圖2放置,上面的結論還成立嗎?請簡單說明理由.
【答案】(1)見解析;(2)90°;(3)成立,見解析
【解析】
試題分析:(1)根據(jù)等腰直角三角形的性質(zhì)得到AB=AC,∠BAD=∠EAC=90°,AD=AE,利用“SAS”可證明△ADB≌△AEC,則BD=CE;
(2)由△ADB≌△AEC得到∠ACE=∠DBA,利用三角形內(nèi)角和定理可得到∠BFC=180°﹣∠ACE﹣∠CDF=180°﹣∠DBA﹣∠BDA=∠DAB=90°;
(3)與(1)一樣可證明△ADB≌△AEC,得到BD=CE,∠ACE=∠DBA,利用三角形內(nèi)角和定理得到∠BFC=∠CAB=90°.
解:(1)∵△ABC、△ADE是等腰直角三角形,
∴AB=AC,∠BAD=∠EAC=90°,AD=AE,
∵在△ADB和△AEC中,
,
∴△ADB≌△AEC(SAS),
∴BD=CE;
(2)∵△ADB≌△AEC,
∴∠ACE=∠ABD,
而在△CDF中,∠BFC=180°﹣∠ACE﹣∠CDF
又∵∠CDF=∠BDA
∴∠BFC=180°﹣∠DBA﹣∠BDA
=∠DAB
=90°;
(3)BD=CE成立,且兩線段所在直線互相垂直,即∠BFC=90°.理由如下:
∵△ABC、△ADE是等腰直角三角形
∴AB=AC,AD=AE,∠BAC=∠EAD=90°,
∵∠BAC+∠CAD=∠EAD+∠CAD
∴∠BAD=∠CAE,
∵在△ADB和△AEC中,
,
∴△ADB≌△AEC(SAS)
∴BD=CE,∠ACE=∠DBA,
∴∠BFC=∠CAB=90°.
科目:初中數(shù)學 來源: 題型:
【題目】已知用3輛A型車和2輛B型車一次可運貨19噸;用2輛A型車和3輛B型車一次可運貨 21噸.(每輛車每次都滿載貨物)
(1)求1輛A型車和1輛B型車載滿貨物一次分別可以運多少噸?
(2)某貨物中心現(xiàn)有49噸貨物,計劃同時租用A型車和B型車若干輛,一次運完,且恰好每輛車都載滿貨物,請問有哪幾種不同的租車方法.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在當今“互聯(lián)網(wǎng)”時代,有一種用“因式分解法”生成密碼的方法:將一個多項式因式分解,如將多項式分解的結果為當時,,,,此時可得到數(shù)字密碼182021.
根據(jù)上述方法,當,時,對于多項式分解因式后可以形成哪些數(shù)字密碼寫出兩個即可?
將多項式因式分解后,利用題目中所示的方法,當時可以得到密碼808890,求m,n的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,A(4,3)是反比例函數(shù)y=在第一象限圖象上一點,連接OA,過A作AB∥x軸,截取AB=OA(B在A右側),連接OB,交反比例函數(shù)y=的圖象于點P.
(1)求反比例函數(shù)y=的表達式;
(2)求點B的坐標;
(3)求△OAP的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在⊙O中,OE垂直于弦AB,垂足為點D,交⊙O于點C,∠EAC=∠CAB.
(1)求證:直線AE是⊙O的切線;
(2)若AB=8,sin∠E= ,求⊙O的半徑.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,矩形ABCD的面積為20cm2,對角線交于點O;以AB、AO為鄰邊做平行四邊形AOC1B,對角線交于點O1;以AB、AO1為鄰邊做平行四邊形AO1C2B;…依此類推,則平行四邊形AO4C5B的面積為( )
A. cm2 B. cm2 C. cm2 D. cm2
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】△ABC在平面直角坐標系中的位置如圖所示,其中每個小正方形的邊長為1個單位長度.
(1)按要求作圖:
①畫出△ABC關于原點O的中心對稱圖形△A1B1C1;
②畫出將△ABC繞點O順時針旋轉90°得到△A2B2C2,
(2)按照(1)中②作圖,回答下列問題:△A2B2C2中頂點A2坐標為 ,B2的坐標為
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某公司經(jīng)銷一種綠茶,每千克成本為50元.市場調(diào)查發(fā)現(xiàn),在一段時間內(nèi),銷售量w(千克)隨銷售單價x(元/千克)的變化而變化,具體關系式為 ,且物價部門規(guī)定這種綠茶的銷售單價不得高于90元/千克.設這種綠茶在這段時間內(nèi)的銷售利潤為y(元),解答下列問題:
(1)求y與x的關系式.
(2)當x取何值時,y的值最大?
(3)如果公司想要在這段時間內(nèi)獲得 元的銷售利潤,銷售單價應定為多少元?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在矩形ABCD中,M、N分別是邊AD、BC的中點,點P、Q在DC邊上,且PQ= DC.若AB=16,BC=20,則圖中陰影部分的面積是 .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com