【題目】如圖, 是 內(nèi)一點(diǎn), 與 相交于 、 兩點(diǎn),且與 、 分別相切于點(diǎn) 、, .連接 、.
(1)求證: .
(2)已知 , .求四邊形 是矩形時(shí) 的半徑.
【答案】(1)見解析;(2)
【解析】試題分析:
(1)由AB、AC和⊙O相切于點(diǎn)D、E可得AD=AE,由此可得∠ADE=∠AED,結(jié)合DE∥BC,可得∠B=∠C,即可得到AB=AC了;
(2)如下圖,連接AO交DE于點(diǎn)M,延長(zhǎng)AO交BC于點(diǎn)N,連接OD、OE和DG,設(shè)⊙O的半徑為r,由已知條件易證BN=3,∠ANB=90°,從而可得AN=4,在證△ADO∽△ANB,由此可得,即從而可得AD= ,則BD= ,再證△BDG∽△BNA可得,即,由此即可解得: .
試題解析:
(1)∵ 與 、 分別相切于點(diǎn) 、,
∴.
∴.
∵,
∴, .
∴.
∴;
(2) 如圖,連接 ,交 于點(diǎn) ,延長(zhǎng) 交 于點(diǎn) ,連接OD、 、,設(shè) 的半徑為 ,
∵ 四邊形 是矩形,
∴∠DEG=90°,
∴ 是 的直徑.
∵,AN平分∠BAC,
∴∠ANB=90°,
∴在Rt△ABN中可得:AN=4,
∵AB和⊙O相切于點(diǎn)D,
∴∠ADO=∠GDB=90°=∠ANB,
∵∠DAO=∠NAB,
∴△ADO∽△ANB,
∴,即,
∴AD= ,
∵∠GDB=∠ANB=90°,∠B=∠B,
∴△BDG∽△BNA,
∴,即,解得: .
∴四邊形 是矩形時(shí) 的半徑為 .
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】華聯(lián)超市第一次用7000元購(gòu)進(jìn)甲、乙兩種商品,其中甲商品的件數(shù)是乙商品件數(shù)的2倍,甲、乙兩種商品的進(jìn)價(jià)和售價(jià)如表:(注:獲利=售價(jià)﹣進(jìn)價(jià))
甲 | 乙 | |
進(jìn)價(jià)(元/件) | 20 | 30 |
售價(jià)(元/件) | 25 | 40 |
(1)該超市購(gòu)進(jìn)甲、乙兩種商品各多少件?
(2)該超市將第一次購(gòu)進(jìn)的甲、乙兩種商品全部賣完后一共可獲得多少利潤(rùn)?
(3)該超市第二次以第一次的進(jìn)價(jià)又購(gòu)進(jìn)甲、乙兩種商品,其中甲商品的件數(shù)不變,乙商品的件數(shù)是第一次的3倍:甲商品按原價(jià)銷售,乙商品打折銷售,第二次兩種商品都售完以后獲得的總利潤(rùn)比第一次獲得的總利潤(rùn)多800元,求第二次乙商品是按原價(jià)打幾折銷售?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為增強(qiáng)學(xué)生體質(zhì),各學(xué)校普遍開展了陽(yáng)光體育活動(dòng),某校為了解全校1000名學(xué)生每周課外體育活動(dòng)時(shí)間的情況,隨機(jī)調(diào)查了其中的50名學(xué)生,對(duì)這50名學(xué)生每周課外體育活動(dòng)時(shí)間x(單位:小時(shí))進(jìn)行了統(tǒng)計(jì).根據(jù)所得數(shù)據(jù)繪制了一幅不完整的統(tǒng)計(jì)圖,并知道每周課外體育活動(dòng)時(shí)間在6≤x<8小時(shí)的學(xué)生人數(shù)占24%.根據(jù)以上信息及統(tǒng)計(jì)圖解答下列問題:
(1)本次調(diào)查屬于 調(diào)查,樣本容量是 ;
(2)請(qǐng)補(bǔ)全頻數(shù)分布直方圖中空缺的部分;
(3)求這50名學(xué)生每周課外體育活動(dòng)時(shí)間的平均數(shù);
(4)估計(jì)全校學(xué)生每周課外體育活動(dòng)時(shí)間不少于6小時(shí)的人數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在某一城市美化工程招標(biāo)時(shí),有甲、乙兩個(gè)工程隊(duì)投標(biāo).經(jīng)測(cè)算:甲隊(duì)單獨(dú)完成這項(xiàng)工程需要60天,乙隊(duì)單獨(dú)完成這項(xiàng)工程需要90天;若由甲隊(duì)先做20天,剩下的工程由甲、乙兩隊(duì)合做完成.
(1)甲、乙兩隊(duì)合作多少天?
(2)甲隊(duì)施工一天需付工程款3.5萬(wàn)元,乙隊(duì)施工一天需付工程款2萬(wàn)元.若該工程計(jì)劃在70天內(nèi)完成,在不超過(guò)計(jì)劃天數(shù)的前提下,是由甲隊(duì)或乙隊(duì)單獨(dú)完成該工程省錢?還是由甲乙兩隊(duì)全程合作完成該工程省錢?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】一般情況下+=不成立,但有些數(shù)可以使得它成立,例如:a=b=0.我們稱使得+=成立的一對(duì)數(shù)a,b為“相伴數(shù)對(duì)”,記為(a,b).
(1)若(1,b)是“相伴數(shù)對(duì)”,求b的值;
(2)寫出一個(gè)“相伴數(shù)對(duì)”(a,b),其中a,b為整數(shù)且a≠0;
(3)若(m,n)是“相伴數(shù)對(duì)”,求代數(shù)式m﹣n﹣[4m﹣2(3n﹣1)]的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知O是坐標(biāo)原點(diǎn),以P(1,1)為圓心的⊙P與x軸、y軸分別相切于點(diǎn)M和點(diǎn)N.點(diǎn)F從點(diǎn)M出發(fā),沿x軸正方向以每秒1個(gè)單位長(zhǎng)度的速度運(yùn)動(dòng),連結(jié)PF,過(guò)點(diǎn)P作PE⊥PF交y軸于點(diǎn)E.設(shè)點(diǎn)F運(yùn)動(dòng)的時(shí)間是t秒(t>0).
(1)求點(diǎn)E的坐標(biāo)(用t表示);
(2)在點(diǎn)F運(yùn)動(dòng)過(guò)程中,當(dāng)PF=2OE時(shí),求t的值.
(3)當(dāng)t>1時(shí),作點(diǎn)F關(guān)于點(diǎn)M的對(duì)稱點(diǎn)F′.點(diǎn)Q是線段MF′的中點(diǎn),連結(jié)QE.在點(diǎn)F運(yùn)動(dòng)過(guò)程中,是否存在某一時(shí)刻,使得△QOE與△PMF相似,若存在,求出t的值;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知的頂點(diǎn)A、C分別在直線和上,O是坐標(biāo)原點(diǎn),則對(duì)角線OB長(zhǎng)的最小值為( )
A. 4B. 5C. 6D. 7
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】風(fēng)電已成為我國(guó)繼煤電、水電之后的第三大電源,風(fēng)電機(jī)組主要由塔桿和葉片組成(如圖1),圖2是從圖1引出的平面圖.假設(shè)你站在A處測(cè)得塔桿頂端C的仰角是55°,沿HA方向水平前進(jìn)43米到達(dá)山底G處,在山頂B處發(fā)現(xiàn)正好一葉片到達(dá)最高位置,此時(shí)測(cè)得葉片的頂端D(D、C、H在同一直線上)的仰角是45°.已知葉片的長(zhǎng)度為35米(塔桿與葉片連接處的長(zhǎng)度忽略不計(jì)),山高BG為10米,BG⊥HG,CH⊥AH,求塔桿CH的高.(參考數(shù)據(jù):tan55°≈1.4,tan35°≈0.7,sin55°≈0.8,sin35°≈0.6)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com