【題目】如圖,正方形ABCD的邊長為4,動點E從點A出發(fā),以每秒2個單位的速度沿A→D→A運動,動點G從點A出發(fā),以每秒1個單位的速度沿A→B運動,當有一個點到達終點時,另一點隨之也停止運動.過點G作FG⊥AB交AC于點F.設(shè)運動時間為t(單位:秒).以FG為一直角邊向右作等腰直角三角形FGH,△FGH與正方形ABCD重疊部分的面積為S.
(1)當t=1.5時,S=________;當t=3時,S=________.
(2)設(shè)DE=y1,AG=y2,在如圖所示的網(wǎng)格坐標系中,畫出y1與y2關(guān)于t的函數(shù)圖象.并求當t為何值時,四邊形DEGF是平行四邊形?
【答案】(1); ;(2)當t=或t=4時,四邊形DEGF是平行四邊形.
【解析】試題分析:(1)當t=1.5時,如圖①,重疊部分的面積是△FGH的面積,求出即可;當t=3時,如圖②,重疊部分的面積是四邊形FGBK的面積,也就是△FGH的面積減去△KBH的面積,求出即可;
(2)進行分類討論,列出方程即可求出t的值.
試題解析:當t=1.5時,如圖①,重疊部分的面積是△FGH的面積,所以S=;
當t=3時,如圖②,重疊部分的面積是四邊形FGBK的面積,也就是△FGH的面積減去△KBH的面積,所以S=×3×3-×2×2=.
(2)由題意可以求得
y1= ;y2=t(0≤t≤4).<
所以y1與y2關(guān)于t的函數(shù)圖象如圖③所示.
因為運動過程中,DE∥FG,所以當DE=FG時,四邊形DEGF是平行四邊形.
∵FG=AG,
∴DE=AG,
∴y1=y2.由圖象可知,有兩個t值滿足條件:
①當0≤t≤2時,由4-2t=t,解得t=;
②當2<t≤4時,由2t-4=t,解得t=4.
所以當t=或t=4時,四邊形DEGF是平行四邊形.
科目:初中數(shù)學 來源: 題型:
【題目】小明、小華在一棟電梯樓前感慨樓房真高.小明說:“這樓起碼20層!”小華卻不以為然:“20層?我看沒有,數(shù)數(shù)就知道了!”小明說:“有本事,你不用數(shù)也能明白!”小華想了想說:“沒問題!讓我們來量一量吧!”小明、小華在樓體兩側(cè)各選A、B兩點,測量數(shù)據(jù)如圖,其中矩形CDEF表示樓體,AB=150米,CD=10米,∠A=30°,∠B=45°,(A、C、D、B四點在同一直線上)問:
(1)樓高多少米?
(2)若每層樓按3米計算,你支持小明還是小華的觀點呢?請說明理由.(參考數(shù)據(jù):≈1.73,≈1.41,≈2.24)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,直線l:y=x+m與x軸交于A點,且經(jīng)過點B(﹣,2).已知拋物線C:y=ax2+bx+9與x軸只有一個公共點,恰為A點.
(1)求m的值及∠BAO的度數(shù);
(2)求拋物線C的函數(shù)表達式;
(3)將拋物線C沿x軸左右平移,記平移后的拋物線為C1,其頂點為P.
平移后,將△PAB沿直線AB翻折得到△DAB,點D能否落在拋物線C1上?
如能,求出此時頂點P的坐標;如不能,說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知點(﹣3,y3),(﹣2,y1),(﹣1,y2)在函數(shù)y=x2+1的圖象上,則y1 , y2 , y3的大小關(guān)系是( )
A.y1>y2>y3
B.y3>y1>y2
C.y3>y2>y1
D.y2>y1>y3
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】九(3)班“2016年新年聯(lián)歡會”中,有一個摸獎游戲,規(guī)則如下:有4張紙牌,背面都是喜羊羊頭像,正面有2張笑臉、2張哭臉.現(xiàn)將4張紙牌洗勻后背面朝上擺放到桌上,然后讓同學去翻紙牌.
(1)現(xiàn)小芳有一次翻牌機會,若正面是笑臉的就獲獎,正面是哭臉的不獲獎.她從中隨機翻開一張紙牌,則小芳獲獎的概率是 ;
(2)如果小芳、小明都有翻兩張牌的機會.小芳先翻一張,放回洗勻后再翻一張;小明同時翻開兩張紙牌.他們各自翻開的兩張紙牌中只要出現(xiàn)笑臉就獲獎.他們獲獎的機會相等嗎?分析說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】學習“利用三角函數(shù)測高”后,某綜合實踐活動小組實地測量了鳳凰山與中心廣場的相對高度AB,其測量步驟如下:
(1)在中心廣場測點C處安置測傾器,測得此時山頂A的仰角∠AFH=30°;
(2)在測點C與山腳B之間的D處安置測傾器(C、D與B在同一直線上,且C、D之間的距離可以直接測得),測得此時山頂上紅軍亭頂部E的仰角∠EGH=45°;
(3)測得測傾器的高度CF=DG=1.5米,并測得CD之間的距離為288米;
已知紅軍亭高度為12米,請根據(jù)測量數(shù)據(jù)求出鳳凰山與中心廣場的相對高度AB.(取1.732,結(jié)果保留整數(shù))
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com