【題目】如圖,BE與CD相交于點(diǎn)A,CF為∠BCD的平分線,EF為∠BED的平分線,EF與CD交于點(diǎn)M,CF與BE交于點(diǎn)N.
(1)若∠D=70°,∠BED=30°,則∠EMA= (度);
(2)若∠B=60°,∠BCD=40°,則∠ENC= (度);
(3)∠F與∠B、∠D有怎樣的數(shù)量關(guān)系?證明你的結(jié)論.
【答案】(1)85;(2)80;(3)∠F=(∠B+∠D).
【解析】
(1)利用角平分線的性質(zhì)以及三角形外角的性質(zhì)求解即可;
(2)利用角平分線的性質(zhì)以及三角形外角的性質(zhì)求解即可;
(3)利用三角形外角的性質(zhì)求得∠D+∠DEF+∠B+∠BCF=∠F+∠DCF+∠F+∠BEF,利用角平分線的性質(zhì)可證得∠B+∠D=2∠F,從而求得答案.
(1)∵EF為∠BED的平分線,∠BED=30°,
∴∠DEM=∠FEN=∠BED=15°.
又∵∠EMA=∠D+∠DEM,∠D=70°,
∴∠EMA=85°.
故答案為:85°.
(2)∵CF為∠BCD的平分線,∠BCD=40°,
∴∠BCN=∠FCM=∠BCD=20°.
又∵∠ENC=∠B+∠BCN,∠B=60°,
∴∠ENC=80°.
故答案為:80°.
(3)∠F=(∠B+∠D).
證明:∵∠EMA=∠D+∠DEF=∠F+∠DCF,
∠ENC=∠B+∠BCF=∠F+∠BEF,
∴∠D+∠DEF+∠B+∠BCF=∠F+∠DCF+∠F+∠BEF.
又∵CF為∠BCD的平分線,EF為∠BED的平分線,
∴∠DEF=∠BEF,∠DCF=∠BCF.
∴∠B+∠D=2∠F.
即:∠F=(∠B+∠D).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,OE,OF分別是AC,BD的垂直平分線,垂足分別為E,F,且AB=CD,∠ABD=120°,∠CDB=38°,求∠OBD的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(2015本溪,第9題,3分)如圖,在平面直角坐標(biāo)系中,直線AB與x軸交于點(diǎn)A(﹣2,0),與x軸夾角為30°,將△ABO沿直線AB翻折,點(diǎn)O的對(duì)應(yīng)點(diǎn)C恰好落在雙曲線()上,則k的值為( 。
A. 4 B. ﹣2 C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知AB為⊙O的直徑,CD是弦,AB⊥CD于E,OF⊥AC于F,BE=OF.
(1)求證:OF∥BC;
(2)求證:△AFO≌△CEB;
(3)若EB=5cm,CD=10cm,設(shè)OE=x,求x值及陰影部分的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】二次函數(shù)(a≠0)圖象如圖所示,下列結(jié)論:①abc>0;②2a+b=0;③當(dāng)m≠1時(shí),a+b>;④a-b+c>0;⑤若, 且, 則.其中正確的有( ).
A. ①②③ B. ②④ C. ②⑤ D. ②③⑤
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD中,∠A=∠B=60°,∠ADC=90°,∠BCD=150°,點(diǎn)E是AB邊上一點(diǎn),DE⊥AB,EC⊥BC.
(1)試判斷△DEC的形狀,并說明理由.
(2)若BC=3,BE=6.求AB和AD的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,把長(zhǎng)方形紙片紙沿對(duì)角線折疊,設(shè)重疊部分為△,那么,下列說法錯(cuò)誤的是( )
A.△是等腰三角形,
B.折疊后∠ABE和∠CBD一定相等
C.折疊后得到的圖形是軸對(duì)稱圖形
D.△EBA和△EDC一定是全等三角形
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知x=1是一元二次方程(m+1)x-mx+2m+3=0的一個(gè)根。
(1)求m的值,并寫出此時(shí)的一元二次方程的一般形式
(2)把方程兩根分別記為,,不解方程,求+的值。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商場(chǎng)為了吸引顧客,設(shè)立了一個(gè)可以自由轉(zhuǎn)動(dòng)的轉(zhuǎn)盤(如圖,轉(zhuǎn)盤被平均分成份),并規(guī)定:顧客每購(gòu)物滿元,就能獲得一次轉(zhuǎn)動(dòng)轉(zhuǎn)盤的機(jī)會(huì).如果轉(zhuǎn)盤停止后,指針正好對(duì)準(zhǔn)紅色、黃色、綠色區(qū)域,那么顧客就可以分別獲得元、元、元的購(gòu)物券,憑購(gòu)物券可以在該商場(chǎng)繼續(xù)購(gòu)物.如果顧客不愿意轉(zhuǎn)盤,那么可直接獲得元的購(gòu)物券.
求轉(zhuǎn)動(dòng)一次轉(zhuǎn)盤獲得購(gòu)物券的概率;
轉(zhuǎn)轉(zhuǎn)盤和直接獲得購(gòu)物券,你認(rèn)為哪種方式對(duì)顧客更合算?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com