【題目】如圖,已知AB為⊙O的直徑,CD是弦,AB⊥CD于E,OF⊥AC于F,BE=OF.
(1)求證:OF∥BC;
(2)求證:△AFO≌△CEB;
(3)若EB=5cm,CD=10cm,設OE=x,求x值及陰影部分的面積.
【答案】(1)證明見解析;(2)證明見解析;(3)陰影部分的面積是:(﹣25)cm2.
【解析】
(1)根據(jù)直徑所對的圓周角是直角,以及垂直于同一直線的兩直線平行即可證得;
(2)根據(jù)垂徑定理以及等弧所對的圓周角相等,即可證得:△AFO和△CEB的兩個角相等,從而證得兩個三角形相似;
(3)根據(jù)勾股定理求得x的值,然后根據(jù)陰影部分的面積=扇形COD的面積-△COD的面積即可求解.
(1)∵AB為⊙O的直徑,
∴AC⊥BC
又∵OF⊥AC
∴OF∥BC
(2)∵AB⊥CD
∴=,
∴∠CAB=∠BCD
又∵∠AFO=∠CEB=90°,OF=BE,
∴△AFO≌△CEB
(3)連接DO.設OE=x,
∵AB⊥CD
∴
在△OCB中,OC=OB=x+5(cm),
根據(jù)勾股定理可得:
解得:x=5,即OE=5cm,
∴
∴∠COE=60°
∴∠COD=120°,
∴扇形COD的面積是:
△COD的面積是:
∴陰影部分的面積是: cm2.
科目:初中數(shù)學 來源: 題型:
【題目】△ABC是一張等腰直角三角形紙板,∠C=Rt∠,AC=BC=2.要在這張紙板中剪出一個盡可能大的正方形(剪法如圖1所示),圖1中剪法稱為第1次剪取,記所得的正方形面積為S1;按照圖1中的剪法,在余下的△ADE和△BDF中,分別剪取正方形,得到兩個相同的正方形,稱為第2次剪取,并記這兩個正方形面積和為S2(如圖2),則S2=_____;再在余下的四個三角形中,用同樣的方法分別剪取正方形,得到四個相同的正方形,稱為第3次剪取,并記這四個正方形的面積和為S3(如圖3);繼續(xù)操作下去…則第2018次剪取后,S2018=_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】直線AB:y=-x-b分別與x,y軸交于A(6,0)、B兩點,過點B的直線交x軸負半軸于C,且OB:OC=3:1.
(1)求點B的坐標;
(2)求直線BC的解析式;
(3)直線EF:y=2x-k(k≠0)交AB于E,交BC于點F,交x軸于點D,是否存在這樣的直線EF,使得S△EBD=S△FBD?若存在,求出k的值;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知Rt△ABC中,∠ACB=90°,∠B=15°,邊AB的垂直平分線交邊BC于點E,垂足為點D,取線段BE的中點F,聯(lián)結DF.求證:AC=DF.(說明:此題的證明過程需要批注理由)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】本學期學校開展以“感受中華傳統(tǒng)美德”為主題的研學活動,組織150名學生參觀歷史博物館和民俗展覽館,每一名學生只能參加其中一項活動,共支付票款2000元,票價信息如下:
地點 | 票價 |
歷史博物館 | 10元/人 |
民俗展覽館 | 20元/人 |
(1)請問參觀歷史博物館和民俗展覽館的人數(shù)各是多少人?
(2)若學生都去參觀歷史博物館,則能節(jié)省票款多少元?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】平面內的兩條直線有相交和平行兩種位置關系.
(1)如圖1,若AB∥CD,點P在AB、CD內部,∠B=50°,∠D=30°,求∠BPD.
(2)如圖2,將點P移到AB、CD外部,則∠BPD、∠B、∠D之間有何數(shù)量關系?(不需證明)
(3)如圖3,寫出∠BPD﹑∠B﹑∠D﹑∠BQD之間的數(shù)量關系?請證明你的結論.
(4)如圖4,求出∠A+∠B+∠C+∠D+∠E+∠F的度數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,BE與CD相交于點A,CF為∠BCD的平分線,EF為∠BED的平分線,EF與CD交于點M,CF與BE交于點N.
(1)若∠D=70°,∠BED=30°,則∠EMA= (度);
(2)若∠B=60°,∠BCD=40°,則∠ENC= (度);
(3)∠F與∠B、∠D有怎樣的數(shù)量關系?證明你的結論.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為滿足市場需求,新生活超市在端午節(jié)前夕購進價格為3元/個的某品牌粽子,根據(jù)市場預測,該品牌粽子每個售價4元時,每天能出售500個,并且售價每上漲0.1元,其銷售量將減少10個,為了維護消費者利益,物價部門規(guī)定,該品牌粽子售價不能超過進價的200%,請你利用所學知識幫助超市給該品牌粽子定價,使超市每天的銷售利潤為800元.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖所示,△ABC在正方形網(wǎng)格中,若點A的坐標為(0,3),按要求回答下列問題:
(1)在圖中建立正確的平面直角坐標系;
(2)根據(jù)所建立的坐標系,寫出點B和點C的坐標;
(3)作出△ABC關于x軸的對稱圖形△A′B′C′.(不用寫作法)
(4)求△ABC的面積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com