【題目】如圖,在四邊形,.點從點出發(fā),沿方向勻速運動,速度為同時,點從點出發(fā),沿方向勻速運動,速度為.過點于點,,于點.設運動時間為.解答下列問題:

1)當為何值時,?

2)設五邊形的面積為, 的函數(shù)關系式;

3)連接.是否存在某一時刻, 使點的垂直平分線上,若存在,求出的值;若不存在,說明理由.

【答案】1)當時,2;(2;(3)存在,當時,點的垂直平分線上.

【解析】

1)如圖1,作輔助線,構建平行線,證明QEDG,得,則,得EC=3t,由BE=2EC解方程可得t的值;
2)如圖2,作輔助線,構建兩個三角形的高線FM,FH,先證明四邊形MHCD是矩形,得MH=CD=8,HMAD,證明APF∽△BEF,列比例式可得HF=8-2t,最后利用面積差可得:y=S四邊形ABCD-SEFB-SECQ,代入面積公式可得結論;
3)如圖3,作輔助線,構建直角三角形,表示各邊的長,利用勾股定理計算PE=10,PN=6,由APF∽△BEF,得,表示PFEF的長,利用勾股定理計算PM、MD的長,若點FDE的垂直平分線上,則FE=FD,列方程可得t的值.

過點,于點

四邊形是平行四邊形

解得:

時,2

過點,,

,

四邊形是矩形

的函數(shù)關系式是

過點垂足為,

若點的垂直平分線上

時,

時,點的垂直平分線上。

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】已知:四邊形中,對角線、相交于點,,

1)如圖1,求證:四邊形為平行四邊形;

2)如圖2,,,,求四邊形的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為了抗擊新冠病毒疫情,全國人民眾志成城,守望相助.春節(jié)后某地一水果購銷商安排15輛汽車裝運AB,C三種水果120噸銷售,所得利潤全部捐贈湖北抗疫.已知按計劃15輛汽車都要裝滿且每輛汽車只能裝同一種水果,每種水果所用車輛均不少于3輛,汽車對不同水果的運載量和每噸水果銷售獲利情況如下表.

水果品種

A

B

C

汽車運載量(噸/輛)

10

8

6

水果獲利(元/噸)

800

1200

1000

1)設裝運A種水果的車輛數(shù)為x輛,裝運B種水果車輛數(shù)為y輛,根據(jù)上表提供的信

息,

yx之間的函數(shù)關系式;

設計車輛的安排方案,并寫出每種安排方案;

2)若原有獲利不變的情況下,當?shù)卣疵繃?/span>50元的標準實行運費補貼,該經(jīng)銷商打算將獲利連同補貼全部捐出.問應采用哪種車輛安排方案,可以使這次捐款數(shù)w(元)最大化?捐款w(元)最大是多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】小張去文具店購買作業(yè)本,作業(yè)本有大、小兩種規(guī)格,大本作業(yè)本的單價比小本作業(yè)本貴0.3元,已知用8元購買大本作業(yè)本的數(shù)量與用5元購買小本作業(yè)本的數(shù)量相同.

1)求大本作業(yè)本與小本作業(yè)本每本各多少元?

2)因作業(yè)需要,小張要再購買一些作業(yè)本,購買小本作業(yè)本的數(shù)量是大本作業(yè)本數(shù)量的2倍,總費用不超過15元.則大本作業(yè)本最多能購買多少本?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為了測量豎直旗桿AB的高度,某綜合實踐小組在地面D處豎直放置標桿CD,并在地面上水平放置一個平面鏡E,使得B,ED在同一水平線上(如圖所示).該小組在標桿的F處通過平面鏡E恰好觀測到旗桿頂A(此時∠AEB=∠FED),在F處測得旗桿頂A的仰角為45°,平面鏡E的俯角為67°,測得FD2.4米.求旗桿AB的高度約為多少米?(結果保留整數(shù),參考數(shù)據(jù):sin67°≈,cos67°≈,tan67°≈

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】現(xiàn)有兩組卡片,它們除標號外其他均相同,第一組卡片上分別寫有數(shù)字“1,2,3”,第二組卡片上分別寫有數(shù)字3,﹣1,1,2”,把卡片背面朝上洗勻,先從第一組卡片中隨機抽出一張,將其標記為一個點坐標的橫坐標,再從第二組卡片中隨機抽出一張,將其標記為一個點坐標的縱坐標,則組成的這個點在一次函數(shù)y=﹣2x+3上的概率是_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在ABCD中,過BBEAD于點E,過點CCFBD分別與BD、BE交于點G、F,連接GE,已知ABBD,CFAB

1)若∠ABE30°AB6,求△ABE的面積;

2)求證:GEBG

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,RtABC中,∠ACB=90°.

(1)以點C為圓心,以CB的長為半徑畫弧,交AB于點G,分別以點G,B為圓心,以大于GB的長為半徑畫弧,兩弧交于點K,作射線CK;

(2)以點B為圓心,以適當?shù)拈L為半徑畫弧,交BC于點M,交AB的延長線于點N,分別以點M,N為圓心,以大于MN的長為半徑畫弧,兩弧交于點P,作直線BPAC的延長線于點D,交射線CK于點E;

(3)過點DDFABAB的延長線于點F,連接CF

根據(jù)以上操作過程及所作圖形,有如下結論:

CE=CD;

BC=BE=BF

;

④∠BCF=BCE

所有正確結論的序號為( )

A.①②③B.①③C.②④D.③④

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在RtABC中,∠ACB90°,AC8BC15,將ABC繞點B順時針旋轉60°,得到BDE,連結DCAB于點F,則ACFBDF的周長之和為(

A.48B.50C.55D.60

查看答案和解析>>

同步練習冊答案