4.若a,b互為相反數(shù),c,d互為倒數(shù),m的絕對(duì)值是1,n是有理數(shù)且既不是正數(shù)也不是負(fù)數(shù),求20161-(a+b)+m2-(cd)2016+n(a+b+c+d)的值.

分析 根據(jù)相反數(shù)以及倒數(shù)、絕對(duì)值、有理數(shù)的定義分別得出各代數(shù)式的值進(jìn)而得出答案.

解答 解:∵a,b互為相反數(shù),c,d互為倒數(shù),m的絕對(duì)值是1,n是有理數(shù)且既不是正數(shù)也不是負(fù)數(shù),
∴a+b=0,cd=1,m=±1,n=0,
∴20161-(a+b)+m2-(cd)2016+n(a+b+c+d)
=2016+1-1+0
=2016.

點(diǎn)評(píng) 此題主要考查了代數(shù)式求值,正確得出各代數(shù)式的值是解題關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

14.計(jì)算
(1)|-1+0.5|÷($\frac{2}{3}$-$\frac{1}{2}$)×6
(2)-32+3×(-1)2016-($\frac{3}{8}$+$\frac{1}{6}$-$\frac{3}{4}$)×(-2)2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

15.解方程
(1)4(x-1)=1-x                           
(2)$\frac{x+1}{3}-\frac{5x-1}{6}=1$.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

12.小明在玩“QQ農(nóng)場(chǎng)”游戲時(shí),觀察以下幾位好友的信息發(fā)現(xiàn):QQ農(nóng)場(chǎng)的等級(jí)數(shù)x與所需升級(jí)經(jīng)驗(yàn)n之間存在著一定的關(guān)系.已知QQ農(nóng)場(chǎng)最高級(jí)數(shù)為100級(jí).
(1)請(qǐng)?jiān)囉靡粋(gè)含x的代數(shù)式表示出n;
(2)小明現(xiàn)在的等級(jí)數(shù)剛剛達(dá)到23級(jí),試求出他的QQ農(nóng)場(chǎng)要升級(jí)到最高級(jí)還需多少升級(jí)經(jīng)驗(yàn)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

19.已知關(guān)于x的一元二次方程ax2+2x-1=0.
(1)若該方程無(wú)解,求a的取值范圍;
(2)當(dāng)a=1時(shí),求該方程的解.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

9.如圖,在平面直角坐標(biāo)系中,頂點(diǎn)為(4,1)的拋物線交y軸于點(diǎn)A,交x軸于B,C兩點(diǎn)(點(diǎn)B在點(diǎn)C的左側(cè)),已知C點(diǎn)坐標(biāo)為(6,0).
(1)求此拋物線的解析式;
(2)已知點(diǎn)P是拋物線上的一個(gè)動(dòng)點(diǎn),且位于A,C兩點(diǎn)之間.問(wèn):當(dāng)點(diǎn)P運(yùn)動(dòng)到什么位置時(shí),△PAC的面積最大?求出△PAC的最大面積;
(3)連接AB,過(guò)點(diǎn)B作AB的垂線交拋物線于點(diǎn)D,以點(diǎn)C為圓心的圓與拋物線的對(duì)稱軸l相切,先補(bǔ)全圖形,再判斷直線BD與⊙C的位置關(guān)系并加以證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

16.如圖,一塊四邊形草地ABCD,其中∠B=90°,AB=4m,BC=3m,AD=12m,CD=13cm,求這塊草地的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題

13.在平面直角坐標(biāo)系中,若點(diǎn)P坐標(biāo)為(4,3),則它位于第一象限.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

14.△ABC是一塊等邊三角形的廢鐵片,利用其剪裁一個(gè)正方形DEFG,使正方形的一條邊DE落在BC上,頂點(diǎn)F、G分別落在AC、AB上.
Ⅰ.證明:△BDG≌△CEF;
Ⅱ.探究:怎樣在鐵片上準(zhǔn)確地畫出正方形.
小聰和小明各給出了一種想法:
(1)小聰想:要畫出正方形DEFG,只要能計(jì)算出正方形的邊長(zhǎng)就能求出BD和CE的長(zhǎng),從而確定D點(diǎn)和E點(diǎn),再畫正方形DEFG就容易了.設(shè)△ABC的邊長(zhǎng)為2,請(qǐng)你幫小聰求出正方形的邊長(zhǎng)(結(jié)果用含根號(hào)的式子表示,不要求分母有理化).
(2)小明想:不求正方形的邊長(zhǎng)也能畫出正方形.具體作法是:
①在AB邊上任取一點(diǎn)G′,如圖2作正方形G′D′E′F′;
②連接BF′并延長(zhǎng)交AC于點(diǎn)F;
③過(guò)點(diǎn)F作FE∥F′E′交BC于點(diǎn)E,F(xiàn)G∥F′G′交AB于點(diǎn)G,GD∥G′D′交BC于點(diǎn)D,則四邊形DEFG即為所求的正方形.你認(rèn)為小明的作法正確嗎?說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案