【題目】如圖所示,平行四邊形內(nèi)有兩個(gè)全等的正六邊形,若陰影部分的面積記為,平行四邊形的面積記為,則的值為____.
【答案】
【解析】
如解圖所示:延長(zhǎng)EN交BC于點(diǎn)F,過(guò)點(diǎn)E作EP⊥BC于P,過(guò)點(diǎn)F作FQ⊥MN于Q,過(guò)點(diǎn)A作AD⊥BC于D,由圖可知,圖中兩個(gè)陰影部分面積相等,證出△BEF為等邊三角形,四邊形NFGM為菱形,求出等邊三角形的邊長(zhǎng)、菱形的邊長(zhǎng)和平行四邊形的邊長(zhǎng),利用銳角三角函數(shù)求出等邊三角形的高、菱形的高和平行四邊形的高,即可求出結(jié)論.
解:如下圖所示,延長(zhǎng)EN交BC于點(diǎn)F,過(guò)點(diǎn)E作EP⊥BC于P,過(guò)點(diǎn)F作FQ⊥MN于Q,過(guò)點(diǎn)A作AD⊥BC于D,
∵平行四邊形內(nèi)有兩個(gè)全等的正六邊形,設(shè)正六邊形的邊長(zhǎng)為a
∴∠AEN=∠A=∠ENM=∠MGC=120°,NM∥BC,AE=EN=NM=MG=a
∴∠B=180°-∠A=60°,∠FNM=180°-∠ENM =60°,∠BEF=180°-∠AEN=60°,∠NFG=∠ENM=120°=∠MGC
∴∠B=∠BEF=60°,∠EFB=180°-∠NFG=60°,NF∥MG,
∴△BEF為等邊三角形,四邊形NFGM為菱形
∴NF=MG=a,
∴BE=BF=EF=EN+NF=2a,AB=AE+BE=3a,BC=BF+FG+GC=4a
∴EP=BE·sin∠B=,AD=AB·sin∠B=,FQ=NF·sin∠FNM=
由圖可知,圖中兩個(gè)陰影部分面積相等
∴=2(S△BEF+S菱形NFGM)
=2(BF·EP+NM·FQ)
=2(×2a×+a·)
=
=BC·AD=4a×=
∴
故答案為:.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,將矩形紙片ABCD的四個(gè)角向內(nèi)折起,恰好拼成一個(gè)無(wú)縫隙,無(wú)重疊的四邊形EFGH,設(shè)AB=a,BC=b,若AH=1,則( 。
A.a2=4b﹣4B.a2=4b+4C.a=2b﹣1D.a=2b+1
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,拋物線y=ax2+3x+c(a<0)與x軸交于點(diǎn)A和點(diǎn)B(點(diǎn)A在原點(diǎn)的左側(cè),點(diǎn)B在原點(diǎn)的右側(cè)),與y軸交于點(diǎn)C,OB=OC=4.
(1)求該拋物線的函數(shù)解析式.
(2)如圖1,連接BC,點(diǎn)D是直線BC上方拋物線上的點(diǎn),連接OD,CD.OD交BC于點(diǎn)F,當(dāng)S△COF:S△CDF=4:3時(shí),求點(diǎn)D的坐標(biāo).
(3)如圖2,點(diǎn)E的坐標(biāo)為(0,-2),點(diǎn)P是拋物線上的點(diǎn),連接EB,PB,PE形成的△PBE中,是否存在點(diǎn)P,使∠PBE或∠PEB等于2∠OBE?若存在,請(qǐng)直接寫(xiě)出符合條件的點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在中,,作的角平分線交于點(diǎn),以為圓心,為半徑作圓.
(1)依據(jù)題意補(bǔ)充完整圖形;(尺規(guī)作圖,保留作圖痕跡,不寫(xiě)作法)
(2)求證:與直線相切;
(3)在(2)的條件下,若與直線相切的切點(diǎn)為,與相交于點(diǎn),連接,;其中,,求的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,平面直角坐標(biāo)系中,A(4,4),B為y軸正半軸上一點(diǎn),連接AB,在第一象限作AC=AB,∠BAC=90°,過(guò)點(diǎn)C作直線CD⊥x軸于D,直線CD與直線y=x交于點(diǎn)E,且ED=5EC,則直線BC解析式為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在直角坐標(biāo)系中,(為坐標(biāo)原點(diǎn),點(diǎn),點(diǎn)是中點(diǎn),連接(將繞點(diǎn)順時(shí)針旋轉(zhuǎn),得到,記旋轉(zhuǎn)角為,點(diǎn)的對(duì)應(yīng)點(diǎn)分別是,連接是中點(diǎn),連接.
(1)如圖①,當(dāng)時(shí),求點(diǎn)的坐標(biāo);
(2)如圖②,當(dāng)時(shí),求證,且;
(3)當(dāng)旋轉(zhuǎn)至點(diǎn)共線時(shí),求點(diǎn)的坐標(biāo)(直接寫(xiě)出結(jié)果即可) .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某數(shù)學(xué)活動(dòng)小組實(shí)地測(cè)量某條河流兩岸互相平行的一段東西走向的河的寬度.在河的北岸邊點(diǎn)A處,測(cè)得河的南岸邊點(diǎn)B處在其南偏東45°方向,然后向北走40米到達(dá)點(diǎn)C處,測(cè)得點(diǎn)B在點(diǎn)C的南偏東27°方向,求這段河的寬度.(結(jié)果精確到1米.參考數(shù)據(jù):,,,)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,矩形AOCB的兩邊OA、OC分別在x軸和y軸上,且OA=2,OC=1.在第二象限內(nèi),將矩形AOCB以原點(diǎn)O為位似中心放大為原來(lái)的倍,得到矩形A1OC1B1,再將矩形A1OC1B1以原點(diǎn)O為位似中心放大倍,得到矩形A2OC2B2,以此類(lèi)推,得到的矩形A2020OC2020B2020的對(duì)角線交點(diǎn)的縱坐標(biāo)為______________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,一艘海輪位于燈塔P的北偏東65°方向,距離燈塔80海里的A處,它沿正南方向航行一段時(shí)間后,到達(dá)位于燈塔P的南偏東45°方向上的B處,則這時(shí)海輪所在的B處距離燈塔P的距離是( )
A.B.C.D.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com