如圖,兩直線相交于一點,若∠1+∠3=80°,則∠2=(  )
分析:根據(jù)∠1,∠3互為對頂角,且∠1+∠3=80°,可求得∠1,∠3的度數(shù),繼而根據(jù)鄰補角的定義求出∠2的度數(shù).
解答:解:∵∠1,∠3互為對頂角,∠1+∠3=80°,
∴∠1=∠3=40°,
∴∠2=180°-∠1=180°-40°=140°.
故選D.
點評:本題考查了對頂角和鄰補角的知識,解答本題的關(guān)鍵是掌握對頂角相等以及鄰補角互補的性質(zhì).
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

“三等分角”是數(shù)學史上一個著名的問題,但僅用尺規(guī)不可能“三等分角”.下面是數(shù)學家帕普斯借助函數(shù)給出的一種“三等分銳角”的方法(如圖):將給定的銳角∠AOB置于直角坐標系中,邊OB在x軸上、邊OA與函數(shù)y=
1
x
的圖象交于點P,以P為圓心、以2OP為半徑作弧交圖象于點R.分別過點P和R作x軸和y軸的平行線,兩直線相交于點M,連接OM得到∠MOB,則∠MOB=
1
3
∠AOB.要明白帕普斯的方法,請研究以下問題:
(1)設P(a,
1
a
)、R(b,
1
b
),求直線OM對應的函數(shù)表達式(用含a,b的代數(shù)式表示);
(2)分別過點P和R作y軸和x軸的平行線,兩直線相交于點Q.請說明Q點在直線OM上,并據(jù)此證明精英家教網(wǎng)∠MOB=
1
3
∠AOB;
(3)應用上述方法得到的結(jié)論,你如何三等分一個鈍角(用文字簡要說明).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(1)“三等分角”是數(shù)學史上一個著名問題,但數(shù)學家已經(jīng)證明,僅用尺規(guī)不可能“三等分任意角”.但對于特定度數(shù)的已知角,如90°角、45°角等,是可以用尺規(guī)進行三等分的.如圖a,∠AOB=90°,我們在邊OB上取一點C,用尺規(guī)以OC為一邊向∠AOB內(nèi)部作等邊△OCD,作射線OD,再用尺規(guī)作出∠DOB的角平分線OE,則射線OD、OE將∠AOB三等分.仔細體會一下其中的道理,然后用尺規(guī)把圖b中的∠MON三等分(已知∠MON=45°).(不需寫作法,但需保留作圖痕跡,允許適當添加文字的說明)
精英家教網(wǎng)
(2)數(shù)學家帕普斯借助函數(shù)給出了一種“三等分銳角”的方法(如圖c):將給定的銳角∠AOB置于直角坐標系中,邊OB在x軸上、邊OA與函數(shù)y=
1
x
的圖象交于點P,以P為圓心、2OP長為半徑作弧交圖象于點R.分別過點P和R作x軸和y軸的平行線,兩直線相交于點M,連接OM得到∠MOB,則∠MOB=
1
3
∠AOB.要明白帕普斯的方法,請研究以下問題:
①設P(a,
1
a
)、R(b,
1
b
),求直線OM對應的函數(shù)關(guān)系式(用含a、b的代數(shù)式表示).
②分別過點P和R作y軸和x軸的平行線,兩直線相交于點Q.請說明Q點在直線OM上,并據(jù)此證明∠MOB=
1
3
∠AOB.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖所示,直線l1的方程為y=-x+1,直線l2的方程為y=x+5,且兩直線相交于點P,過點P的雙曲精英家教網(wǎng)y=
k
x
與直線l1的另一交點為Q(3,m).
(1)求雙曲線的解析式.
(2)根據(jù)圖象直接寫出不等式
k
x
>-x+1
的解集.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖AB、CD相交于點O,AO=BO,AC∥DB.那么OC與OD相等嗎?說明你的理由.
小明的解題過程如下,請你說明每一步的理由.
解:OC=OD,理由如下:
∵AC∥DB  (已 知)
∴∠A=∠B∠C=∠D
(兩直線平行,內(nèi)錯角相等)
(兩直線平行,內(nèi)錯角相等)

在△AOC和△BOD中
∠A=∠B(      ) 
∠C=∠D(      )
AO=BO(     ) 

∴△AOC≌△BOD
(AAS)
(AAS)

∴OC=OD
(全等三角形對應邊相等)
(全等三角形對應邊相等)

查看答案和解析>>

科目:初中數(shù)學 來源:2005年全國中考數(shù)學試題匯編《反比例函數(shù)》(05)(解析版) 題型:解答題

(2005•佛山)“三等分角”是數(shù)學史上一個著名的問題,但僅用尺規(guī)不可能“三等分角”.下面是數(shù)學家帕普斯借助函數(shù)給出的一種“三等分銳角”的方法(如圖):將給定的銳角∠AOB置于直角坐標系中,邊OB在x軸上、邊OA與函數(shù)y=的圖象交于點P,以P為圓心、以2OP為半徑作弧交圖象于點R.分別過點P和R作x軸和y軸的平行線,兩直線相交于點M,連接OM得到∠MOB,則∠MOB=∠AOB.要明白帕普斯的方法,請研究以下問題:
(1)設P(a,)、R(b,),求直線OM對應的函數(shù)表達式(用含a,b的代數(shù)式表示);
(2)分別過點P和R作y軸和x軸的平行線,兩直線相交于點Q.請說明Q點在直線OM上,并據(jù)此證明∠MOB=∠AOB;
(3)應用上述方法得到的結(jié)論,你如何三等分一個鈍角(用文字簡要說明).

查看答案和解析>>

同步練習冊答案