如圖a,ABCD是一矩形紙片,AB=6cm,AD=8cm,E是AD上一點(diǎn),且AE=6cm.操作:(1)將AB向AE折過去,使AB與AE重合,得折痕AF,如圖b;(2)將△AFB以BF為折痕向右折過去,得圖c.則△GFC的面積是
2
2
cm2
分析:根據(jù)折疊的性質(zhì)得到圖a中,四邊形ABFE為正方形,得到∠BAF=∠EAB=45°;在圖b中,∠BAF=45°,可求出BD=AD-AB,從而得到FC;在圖c中,根據(jù)折疊的性質(zhì)得到,∠BAC=45°,易得到△GFC為等腰直角三角形,然后利用三角形的面積公式計(jì)算即可.
解答:解:∵將AB向AE折過去,使AB與AE重合,
∴∠BAF=∠EAB=45°,
在圖b中,∠BAF=45°,BD=AD-AB=8-6=2cm,
∴FC=2cm,
在圖c中,∵∠BAC=45°,
∴∠AFC=45°,
∴△GFC為等腰直角三角形,
∴CG=CF=2cm,
∴△GFC的面積=
1
2
CF•CG=
1
2
×2×2=2(cm2).
故答案為2.
點(diǎn)評(píng):本題考查了折疊的性質(zhì):折疊前后兩圖形全等,即對(duì)應(yīng)角相等,對(duì)應(yīng)邊相等.也考查了矩形的性質(zhì)以及等腰直角三角形的性質(zhì).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,四邊形ABCD是一防洪堤壩的橫截面,AE⊥CD,BF⊥CD,且AE=BF,∠D=∠C,問AD與BC是否相等?說(shuō)明你的理由.
解:在△ADE和△BCF中,
∠D=∠C(     )
∠AED=∠(     )(垂直的意義)
AE=BF(     )
,
[答案:括號(hào)中應(yīng)依次填上:
 
,
 
,
 
]
∴△ADE≌△BCF(
 

∴AD=BC(
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•湖州一模)如圖①是矩形包書紙的示意圖,虛線是折痕,四個(gè)角均為大小相同的正方形,正方形的邊長(zhǎng)為折疊進(jìn)去的寬度.
(1)現(xiàn)有一本書長(zhǎng)為25cm,寬為20cm,厚度是2cm,如果按照如圖①的包書方式,并且折疊進(jìn)去的寬度是3cm,則需要包書紙的長(zhǎng)和寬分別為多少?(請(qǐng)直接寫出答案).
(2)已知數(shù)學(xué)課本長(zhǎng)為26cm,寬為18.5cm,厚為1cm,小明用一張面積為1260cm2 的矩形包書紙按如圖①包好了這本書,求折進(jìn)去的寬度.
(3)如圖②,矩形ABCD是一張一個(gè)角(△AEF)被污損的包書紙,已知AB=30,BC=50,AE=12,AF=16,要使用沒有污損的部分包一本長(zhǎng)為19,寬為16,厚為6的字典,小紅認(rèn)為只要按如圖②的剪裁方式剪出一張面積最大的矩形PGCH就能包好這本字典.設(shè)PM=x,矩形PGCH的面積為y,當(dāng)x取何值時(shí)y最大?并由此判斷小紅的想法是否可行.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,四邊形ABCD是一位師傅用地板磚鋪設(shè)地板尚未完工的地板圖形,為了節(jié)省材料,他準(zhǔn)備在剩余的六塊磚中(如圖22-2所示①②③④⑤⑥)挑選若干塊進(jìn)行鋪設(shè),請(qǐng)你在下列網(wǎng)格紙上幫他設(shè)計(jì)3種不同的鋪法示意圖.
(在圖上畫出分割線,標(biāo)上地磚序號(hào)即可).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,四邊形ABCD是一張矩形紙片,AB=6,AD=8,在AB上取一點(diǎn)E,將紙片沿DE翻折,使點(diǎn)A落在BD上的點(diǎn)F處,求AE的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,四邊形ABCD是一防洪堤壩的橫截面,AE⊥CD,BF⊥CD,且AE=BF,∠D=∠C,問AD與BC是否相等?說(shuō)明你的理由.
解:在△ADE和△BCF中,
∠D=∠C()
∠AED=∠()(垂直的意義)
AE=BF()

∴△ADE≌△BCF  (
AAS
AAS
 )
∴AD=BC   (
全等三角形對(duì)應(yīng)邊相等
全等三角形對(duì)應(yīng)邊相等

查看答案和解析>>

同步練習(xí)冊(cè)答案