【題目】如圖,已知拋物線y=﹣x2﹣x+2與x軸交于A、B兩點(diǎn),與y軸交于點(diǎn)C.
⑴求點(diǎn)A,B,C的坐標(biāo);
⑵點(diǎn)E是此拋物線上的點(diǎn),點(diǎn)F是其對(duì)稱軸上的點(diǎn),求以A,B,E,F為頂點(diǎn)的平行四邊形的面積;
⑶此拋物線的對(duì)稱軸上是否存在點(diǎn)M,使得△ACM是等腰三角形?若存在,請(qǐng)求出點(diǎn)M的坐標(biāo);若不存在,請(qǐng)說明理由.
【答案】(1)(0,2)(2)(3)(﹣1,﹣1)或(﹣1,2+)或(﹣1,2﹣).
【解析】(1)分別令y=0,x=0,即可解決問題;(2)由圖象可知AB只能為平行四邊形的邊,易知點(diǎn)E坐標(biāo)(﹣7,﹣ )或(5,﹣),由此不難解決問題;(3)分A、C、M為頂點(diǎn)三種情形討論,分別求解即可解決問題.
解:(1)令y=0得﹣x2﹣x+2=0,∴x2+2x﹣8=0,
x=﹣4或2,∴點(diǎn)A坐標(biāo)(2,0),點(diǎn)B坐標(biāo)(﹣4,0),
令x=0,得y=2,∴點(diǎn)C坐標(biāo)(0,2).
(2)由圖象可知AB只能為平行四邊形的邊,
∵AB=EF=6,對(duì)稱軸x=﹣1,
∴點(diǎn)E的橫坐標(biāo)為﹣7或5,∴點(diǎn)E坐標(biāo)(﹣7,﹣ )或(5,﹣),此時(shí)點(diǎn)F(﹣1,﹣)
∴以A,B,E,F為頂點(diǎn)的平行四邊形的面積=6×=.
(3)如圖所示,
①當(dāng)C為頂點(diǎn)時(shí),CM1=CA,CM2=CA,作M1N⊥OC于N,
在RT△CM1N中,CN==,
∴點(diǎn)M1坐標(biāo)(﹣1,2+),點(diǎn)M2坐標(biāo)(﹣1,2﹣).
②當(dāng)M3為頂點(diǎn)時(shí),
∵直線AC解析式為y=﹣x+2,線段AC的垂直平分線為y=x,
∴點(diǎn)M3坐標(biāo)為(﹣1,﹣1).
③當(dāng)點(diǎn)A為頂點(diǎn)的等腰三角形不存在.
綜上所述點(diǎn)M坐標(biāo)為(﹣1,﹣1)或(﹣1,2+)或(﹣1,2﹣).
“點(diǎn)睛”本題考查二次函數(shù)綜合題、平行四邊形的判定和性質(zhì)、勾股定理等知識(shí),解題的關(guān)鍵是熟練掌握拋物線與坐標(biāo)軸交點(diǎn)的求法,學(xué)會(huì)分類討論的思想,屬于中考?jí)狠S題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,點(diǎn)P(﹣2,﹣3)所在的象限是( )
A.第一象限
B.第二象限
C.第三象限
D.第四象限
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】適合下列條件的△ABC中,直角三角形的個(gè)數(shù)為( )
①a=,b=,c= ②a=6,∠A=45°; ③∠A=32°,∠B=58°;
④a=7,b=24,c=25 ⑤a=2,b=2,c=4.
A. 2個(gè) B. 3個(gè) C. 4個(gè) D. 5個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】2016年G20杭州峰會(huì)期間,某志愿者小組有五名翻譯,其中一名只會(huì)翻譯法語,三名只會(huì)翻譯英語,還有一名兩種語言都會(huì)翻譯.若從中隨機(jī)挑選兩名組成一組,則該組能夠翻譯上述兩種語言的概率是多少?(請(qǐng)用“畫樹狀圖”的方法給出分析過程,并求出結(jié)果)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,菱形ABCD中,∠A=60°,點(diǎn)P從A出發(fā),以2cm/s的速度沿邊AB、BC、CD勻速運(yùn)動(dòng)到D終止,點(diǎn)Q從A與P同時(shí)出發(fā),沿邊AD勻速運(yùn)動(dòng)到D終止,設(shè)點(diǎn)P運(yùn)動(dòng)的時(shí)間為t(s).△APQ的面積S(cm2)與t(s)之間函數(shù)關(guān)系的圖象由圖2中的曲線段OE與線段EF、FG給出.
(1)求點(diǎn)Q運(yùn)動(dòng)的速度;
(2)求圖2中線段FG的函數(shù)關(guān)系式;
(3)問:是否存在這樣的t,使PQ將菱形ABCD的面積恰好分成1:5的兩部分?若存在,求出這樣的t的值;若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知四邊形 ABCD 中, AB⊥AD,BC⊥CD,AB=BC,∠ABC=1200,∠MBN=600,將∠MBN 繞點(diǎn)B 旋轉(zhuǎn).當(dāng)∠MBN 旋轉(zhuǎn)到如圖的位置,此時(shí)∠MBN 的兩邊分別交 AD、DC 于 E、F,且AE≠CF.延長(zhǎng) DC 至點(diǎn) K,使 CK=AE,連接BK.
求證:(1)△ABE≌△CBK;(2)∠KBC+∠CBF=600 ;(3)CF+AE=EF.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com