【題目】如圖1,菱形ABCD中,∠A=60°,點P從A出發(fā),以2cm/s的速度沿邊AB、BC、CD勻速運動到D終止,點Q從A與P同時出發(fā),沿邊AD勻速運動到D終止,設(shè)點P運動的時間為t(s).△APQ的面積S(cm2)與t(s)之間函數(shù)關(guān)系的圖象由圖2中的曲線段OE與線段EF、FG給出.
(1)求點Q運動的速度;
(2)求圖2中線段FG的函數(shù)關(guān)系式;
(3)問:是否存在這樣的t,使PQ將菱形ABCD的面積恰好分成1:5的兩部分?若存在,求出這樣的t的值;若不存在,請說明理由.
【答案】(1)點Q運動的速度是1cm/s;(2);(3)存在,t=或t=.
【解析】試題分析:(1)根據(jù)函數(shù)圖象中E點所代表的實際意義求解.E點表示點P運動到與點B重合時的情形,運動時間為3s,可得AB=6cm;再由S△APQ=,可求得AQ的長度,進而得到點Q的運動速度;
(2)函數(shù)圖象中線段FG,表示點Q運動至終點D之后停止運動,而點P在線段CD上繼續(xù)運動的情形.如答圖2所示,求出S的表達式,并確定t的取值范圍;
(3)當點P在AB上運動時,PQ將菱形ABCD分成△APQ和五邊形PBCDQ兩部分,如答圖3所示,求出t的值;當點P在BC上運動時,PQ將菱形分為梯形ABPQ和梯形PCDQ兩部分,如答圖4所示,求出t的值.
試題解析:(1)由題意,可知題圖2中點E表示點P運動至點B時的情形,所用時間為3s,則菱形的邊長AB=2×3=6cm.此時如答圖1所示:
AQ邊上的高h=ABsin60°=6×=cm, S=S△APQ=AQh=AQ×3=,解得AQ=3cm.∴點Q的運動速度為:3÷3=1cm/s.(2)由題意,可知題圖2中FG段表示點P在線段CD上運動時的情形.如答圖2所示:
點Q運動至點D所需時間為:6÷1=6s,點P運動至點C所需時間為12÷2=6s,至終點D所需時間為18÷2=9s.
因此在FG段內(nèi),點Q運動至點D停止運動,點P在線段CD上繼續(xù)運動,且時間t的取值范圍為:6≤t≤9.過點P作PE⊥AD交AD的延長線于點E,則PE=PDsin60°=(18-2t)×,
S=S△APQ=ADPE=×6×(+)=.
∴FG段的函數(shù)表達式為:S=(6≤t≤9).
(3)菱形ABCD的面積為:6×6×sin60°=18,
當點P在AB上運動時,PQ將菱形ABCD分成△APQ和五邊形PBCDQ兩部分,如答圖3所示.
此時△APQ的面積S=AQAPsin60°=t2t×=,
根據(jù)題意,得=,
解得:t=s,
當點P在BC上運動時,PQ將菱形分為梯形ABPQ和梯形PCDQ兩部分,如答圖4所示.
此時,有S梯形ABPQ=S菱形ABCD,即(2t-6+t)×6×=×18,
解得t=s,
答:存在,當t=或時,使PQ將菱形ABCD的面積恰好分成1:5的兩部分.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,已知∠ABC=120°,AC=4,
(1)用直尺和圓規(guī)作出△ABC的外接圓⊙O(不寫作法,保留作圖痕跡);
(2)求∠AOC的度數(shù);
(3)求⊙O的半徑.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知拋物線y=﹣x2﹣x+2與x軸交于A、B兩點,與y軸交于點C.
⑴求點A,B,C的坐標;
⑵點E是此拋物線上的點,點F是其對稱軸上的點,求以A,B,E,F為頂點的平行四邊形的面積;
⑶此拋物線的對稱軸上是否存在點M,使得△ACM是等腰三角形?若存在,請求出點M的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線l:y=ax2+bx+c(a,b,c均不為0)的頂點為M,與y軸的交點為N,我們稱以N為頂點,對稱軸是y軸且過點M的拋物線為拋物線l的衍生拋物線,直線MN為拋物線l的衍生直線.
(1)如圖,拋物線y=x2﹣2x﹣3的衍生拋物線的解析式是 ,衍生直線的解析式是 ;
(2)若一條拋物線的衍生拋物線和衍生直線分別是y=﹣2x2+1和y=﹣2x+1,求這條拋物線的解析式;
(3)如圖,設(shè)(1)中的拋物線y=x2﹣2x﹣3的頂點為M,與y軸交點為N,將它的衍生直線MN先繞點N旋轉(zhuǎn)到與x軸平行,再沿y軸向上平移1個單位得直線n,P是直線n上的動點,是否存在點P,使△POM為直角三角形?若存在,求出所有點P的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】當前,“低頭族”已成為熱門話題之一,為了了解路邊行人邊走路邊低頭看手機的情況,應(yīng)采用的收集數(shù)據(jù)的方式是_____;
A.對學(xué)校的同學(xué)發(fā)放問卷進行調(diào)查
B.對在路邊行走的學(xué)生隨機發(fā)放問卷進行調(diào)查
C.對在圖書館里看書的人發(fā)放問卷進行調(diào)查
D.對在路邊行走的路人隨機發(fā)放問卷進行調(diào)查
并說出你的理由_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標系中,過點B(6,0)的直線AB與直線OA相交于點A(4,2),動點M沿路線O→A→C運動.
(1)求直線AB的解析式.
(2)求△OAC的面積.
(3)當△OMC的面積是△OAC的面積的時,求出這時點M的坐標.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,拋物線y= x2+bx+c與x軸、y軸分別相交于點A( 1,0)、B(0,3)兩點,其頂點為D.
(1)求這條拋物線的解析式;
(2)若拋物線與x軸的另一個交點為E. 求△ODE的面積;拋物線的對稱軸上是否存在點P使得△PAB的周長最短。若存在請求出P點的坐標,若不存在說明理由。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】拋物線y= ax2+bx+c上部分點的橫坐標x,縱坐標y的對應(yīng)值如下表:
x | ... | -3 | -2 | - 1 | 0 | 1 | ... |
y | ... | -6 | 0 | 4 | 6 | 6 | ... |
容易看出,(-2,0)是拋物線與x軸的一個交點,則它與x軸的另一個交點的坐標為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線AB與x軸交于點A(1,0),與y軸交于點B(0,﹣2).
(1)求直線AB的解析式;
(2)若直線AB上的點C在第一象限,且S△BOC=2,求點C的坐標.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com