【題目】已知兩個(gè)等腰直角△ABC和△CDE,它們的兩個(gè)直角頂點(diǎn)B、D在直線MN上,過點(diǎn)A、E分別作AG⊥MN,EF⊥MN,垂足分別為G、F.
(1)如圖1,當(dāng)△ABC和△CDE在△BCD的外部時(shí),請(qǐng)你探索線段EF、DB、AG之間的數(shù)量關(guān)系,其數(shù)量關(guān)系為______.
(2)如圖2,將圖1中的△ABC沿BC翻折,其他條件不變,那么(1)中的結(jié)論是否仍然成立?若成立,請(qǐng)你給出證明,若不成立,請(qǐng)?zhí)剿魉鼈兊臄?shù)量關(guān)系,并說明理由.
【答案】(1)BD=EF+AG;(2)成立,證明見解析.
【解析】
(1)結(jié)論:BD=EF+AG.只要證明△FDE≌△HCD(AAS),可得EF=DH,同理可證:△BHC≌△AGB,可得AG=BH,即可解決問題;
(2)結(jié)論不變,證明方法類似;
解:(1)結(jié)論:BD=EF+AG.
理由:如圖1中,作CH⊥MN于H.
∵EF⊥MN,AG⊥MN,
∴∠EFD=∠EDC=∠CHD=90°,
∴∠EDF+∠CDH=90°,∠CDH+∠DCH=90°,
∴∠EDF=∠DCH,
∵DE=DC,
∴△FDE≌△HCD(AAS),
∴EF=DH,
同理可證:△BHC≌△AGB,
∴AG=BH,
∴BD=EF+AG.
故答案為BD=EF+AG.
(2)結(jié)論成立.
理由:如圖2中,作CH⊥MN于H.
∵EF⊥MN,AG⊥MN,
∴∠EFD=∠EDC=∠CHD=90°,
∴∠EDF+∠CDH=90°,∠CDH+∠DCH=90°,
∴∠EDF=∠DCH,
∵DE=DC,
∴△FDE≌△HCD(AAS),
∴EF=DH,
同理可證:△BHC≌△AGB,
∴AG=BH,
∴BD=EF+AG.
故答案為BD=EF+AG.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知點(diǎn)A的坐標(biāo)是(﹣1,0),點(diǎn)B的坐標(biāo)是(9,0),以AB為直徑作⊙O′,交y軸的負(fù)半軸于點(diǎn)C,連接AC、BC,過A、B、C三點(diǎn)作拋物線.
(1)求點(diǎn)C的坐標(biāo)及拋物線的解析式;
(2)點(diǎn)E是AC延長(zhǎng)線上一點(diǎn),∠BCE的平分線CD交⊙O′于點(diǎn)D,求點(diǎn)D的坐標(biāo);并直接寫出直線BC、直線BD的解析式;
(3)在(2)的條件下,拋物線上是否存在點(diǎn)P,使得∠PDB=∠CBD,若存在,請(qǐng)求出點(diǎn)P的坐標(biāo),若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某班在一次班會(huì)課上,就“遇見路人摔倒后如何處理”的主題進(jìn)行討論,并對(duì)全班 50 名學(xué)生的處理方式進(jìn)行統(tǒng)計(jì),得出相關(guān)統(tǒng)計(jì)表和統(tǒng)計(jì)圖.
組別 | A | B | C | D |
處理方式 | 迅速離開 | 馬上救助 | 視情況而定 | 只看熱鬧 |
人數(shù) | m | 30 | n | 5 |
請(qǐng)根據(jù)表圖所提供的信息回答下列問題:
(1)統(tǒng)計(jì)表中的 m= ,n= ;
(2)補(bǔ)全頻數(shù)分布直方圖;
(3)若該校有 2000 名學(xué)生,請(qǐng)據(jù)此估計(jì)該校學(xué)生采取“馬上救助”方式的學(xué)生有多少人?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠ACB=90°,∠A=30°,AB=5,點(diǎn)P是AC上的動(dòng)點(diǎn),連接BP,以BP為邊作等邊△BPQ,連接CQ,則點(diǎn)P在運(yùn)動(dòng)過程中,線段CQ長(zhǎng)度的最小值是______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,反比例函數(shù)y=的圖象經(jīng)過點(diǎn)(﹣1,-2),點(diǎn)A是該圖象第一象限分支上的動(dòng)點(diǎn),連結(jié)AO并延長(zhǎng)交另一分支于點(diǎn)B,以AB為斜邊作等腰直角三角形ABC,頂點(diǎn)C在第四象限,AC與x軸交于點(diǎn)D,當(dāng)=時(shí),則點(diǎn)C的坐標(biāo)為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一個(gè)不透明的布袋里裝有4個(gè)球,其中2個(gè)紅球,2個(gè)白球,它們除顏色外其余都相同.
(1)摸出1個(gè)球是白球的概率是;
(2)同時(shí)摸兩個(gè)球恰好是兩個(gè)紅球的概率(要求畫樹狀圖或列表).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線AB∥CD,EF分別交AB、CD于G、F兩點(diǎn),射線FM平分∠EFD,將射線FM平移,使得端點(diǎn)F與點(diǎn)G重合且得到射線GN.若∠EFC=110°,則∠AGN的度數(shù)是( )
A. 120° B. 125° C. 135° D. 145°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)如圖(1),已知:在△ABC中,∠BAC=90°,AB=AC,直線m經(jīng)過點(diǎn)A,BD⊥直線m, CE⊥直線m,垂足分別為點(diǎn)D、E.證明:DE=BD+CE.
(2) 如圖(2),將(1)中的條件改為:在△ABC中,AB=AC,D、A、E三點(diǎn)都在直線m上,并且有∠BDA=∠AEC=∠BAC=,其中為任意銳角或鈍角.請(qǐng)問結(jié)論DE=BD+CE是否成立?如成立,請(qǐng)你給出證明;若不成立,請(qǐng)說明理由.
(3)拓展與應(yīng)用:如圖(3),D、E是D、A、E三點(diǎn)所在直線m上的兩動(dòng)點(diǎn)(D、A、E三點(diǎn)互不重合),點(diǎn)F為∠BAC平分線上的一點(diǎn),且△ABF和△ACF均為等邊三角形,連接BD、CE,若∠BDA=∠AEC=∠BAC,試判斷△DEF的形狀.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,A1(1,0),A2(1,1),A3(-1,1),A4(-1,-1),A5(2,-1).
(1)繼續(xù)填寫:A6(________,________),A7(________,________),A8(________,________),A9((________,________).A10((________,________),A11(________,________),A12(________,________),A13(________,________).
(2)寫出點(diǎn)A2010(________,________),A2011(________,________).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com