(2013•平涼)如圖,在直角坐標系xOy中,二次函數(shù)y=x2+(2k-1)x+k+1的圖象與x軸相交于O、A兩點.
(1)求這個二次函數(shù)的解析式;
(2)在這條拋物線的對稱軸右邊的圖象上有一點B,使△AOB的面積等于6,求點B的坐標;
(3)對于(2)中的點B,在此拋物線上是否存在點P,使∠POB=90°?若存在,求出點P的坐標,并求出△POB的面積;若不存在,請說明理由.
分析:(1)將原點坐標代入拋物線中即可求出k的值,也就得出了拋物線的解析式.
(2)根據(jù)(1)得出的拋物線的解析式可得出A點的坐標,也就求出了OA的長,根據(jù)△OAB的面積可求出B點縱坐標的絕對值,然后將符合題意的B點縱坐標代入拋物線的解析式中即可求出B點的坐標,然后根據(jù)B點在拋物線對稱軸的右邊來判斷得出的B點是否符合要求即可.
(3)根據(jù)B點坐標可求出直線OB的解析式,由于OB⊥OP,由此可求出P點的坐標特點,代入二次函數(shù)解析式可得出P點的坐標.求△POB的面積時,可先求出OB,OP的長度即可求出△BOP的面積.
解答:解:①∵函數(shù)的圖象與x軸相交于O,
∴0=k+1,
∴k=-1,
∴y=x2-3x,

②假設存在點B,過點B做BD⊥x軸于點D,
∵△AOB的面積等于6,
1
2
AO•BD=6,
當0=x2-3x,
x(x-3)=0,
解得:x=0或3,
∴AO=3,
∴BD=4
 即4=x2-3x,
 解得:x=4或x=-1(舍去).
又∵頂點坐標為:( 1.5,-2.25).
∵2.25<4,
∴x軸下方不存在B點,
∴點B的坐標為:(4,4);

③∵點B的坐標為:(4,4),
∴∠BOD=45°,BO=
42+42
=4
2
,
當∠POB=90°,
∴∠POD=45°,
設P點橫坐標為:x,則縱坐標為:x2-3x,
即-x=x2-3x,
解得x=2 或x=0,
∴在拋物線上僅存在一點P (2,-2).
∴OP=
22+22
=2
2
,
使∠POB=90°,
∴△POB的面積為:
1
2
PO•BO=
1
2
×4
2
×2
2
=8.
點評:本題考查了二次函數(shù)解析式的確定、函數(shù)圖象交點、圖象面積求法等知識.利用已知進行分類討論得出符合要求點的坐標是解題關鍵.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

(2013•平涼)如圖是兩個相同的正方體和一個圓錐形組成的立體圖形,其主視圖是( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2013•平涼)如圖,把一塊含有45°的直角三角形的兩個頂點放在直尺的對邊上.如果∠1=20°,那么∠2的度數(shù)是(  )

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2013•平涼)如圖,已知BC=EC,∠BCE=∠ACD,要使△ABC≌△DEC,則應添加的一個條件為
AC=CD
AC=CD
.(答案不唯一,只需填一個)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2013•平涼)如圖,在△ABC中,D是BC邊上的一點,E是AD的中點,過A點作BC的平行線交CE的延長線于點F,且AF=BD,連接BF.
(1)線段BD與CD有什么數(shù)量關系,并說明理由;
(2)當△ABC滿足什么條件時,四邊形AFBD是矩形?并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2013•平涼)如圖,在⊙O中,半徑OC垂直于弦AB,垂足為點E.
(1)若OC=5,AB=8,求tan∠BAC;
(2)若∠DAC=∠BAC,且點D在⊙O的外部,判斷直線AD與⊙O的位置關系,并加以證明.

查看答案和解析>>

同步練習冊答案