【題目】已知拋物線y1=ax2+bx+c(a0,ac)過(guò)點(diǎn)A(1,0),頂點(diǎn)為B,且拋物線不經(jīng)過(guò)第三象限.

(1)使用a、c表示b;

(2)判斷點(diǎn)B所在象限,并說(shuō)明理由;

(3)若直線y2=2x+m經(jīng)過(guò)點(diǎn)B,且交拋物線于另一點(diǎn)C(,b+8),求當(dāng)x1時(shí),y1的取值范圍.

【答案】(1)b=-a-c;(2)第四象限,理由見(jiàn)解析;(3)y1-2.

【解析】

試題分析:此題主要考查了二次函數(shù)的綜合應(yīng)用以及根與系數(shù)的關(guān)系和一次函數(shù)與二次函數(shù)交點(diǎn)問(wèn)題等知識(shí),根據(jù)數(shù)形結(jié)合得出是解題關(guān)鍵.

(1)拋物線經(jīng)過(guò)A(1,0),把點(diǎn)代入函數(shù)即可得到b=-a-c;

(2)判斷點(diǎn)在哪個(gè)象限,需要根據(jù)題意畫(huà)圖,由條件:圖象不經(jīng)過(guò)第三象限就可以推出開(kāi)口向上,a>0,只需要知道拋物線與x軸有幾個(gè)交點(diǎn)即可解決,判斷與x軸有兩個(gè)交點(diǎn),一個(gè)可以考慮,由就可以判斷出與x軸有兩個(gè)交點(diǎn),所以在第四象限;或者直接用公式法(或十字相乘法)算出,由兩個(gè)不同的解x1=1,x2=,(ac),進(jìn)而得出點(diǎn)B所在象限;

(3)當(dāng)x1時(shí),y1的取值范圍,只要把圖象畫(huà)出來(lái)就清晰了,難點(diǎn)在于要觀察出C(,b+8)是拋物線與x軸的另一個(gè)交點(diǎn),理由是x1=1,x2=,(ac),由這里可以發(fā)現(xiàn),b+8=0,b=-8,a+c=8,還可以發(fā)現(xiàn)CA的右側(cè);可以確定直線經(jīng)過(guò)B、C兩點(diǎn),看圖象可以得到,x1時(shí),y1大于等于最小值,此時(shí)算出二次函數(shù)最小值即可,即求出即可,已經(jīng)知道b=-8,a+c=8,算出a,c即可,即可得出y1的取值范圍.

試題解析:(1)拋物線y1=ax2+bx+c(a0,ac),經(jīng)過(guò)A(1,0),

把點(diǎn)代入函數(shù)即可得到:b=-a-c;

(2)B在第四象限.

理由如下:

拋物線y1=ax2+bx+c(a0,ac)過(guò)點(diǎn)A(1,0),

x1=1,x2=,ac,

所以拋物線與x軸有兩個(gè)交點(diǎn),

又因?yàn)閽佄锞不經(jīng)過(guò)第三象限,

所以a>0,且頂點(diǎn)在第四象限;

(3)C(,b+8),且在拋物線上,

b+8=0,b=-8,

a+c=-b,

a+c=8,

把B、C兩點(diǎn)代入直線解析式易得:c-a=4,

,

解得:,

如圖所示,C在A的右側(cè),

當(dāng)x1時(shí),y1=-2

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】據(jù)報(bào)道20184月,某市土地出讓金達(dá)11.9億,比2017年同期的7.984億上漲幅度達(dá)到48.8%,其中數(shù)值11.9億可用科學(xué)記數(shù)法表示為(

A. 1.19×109 B. 11.9×108 C. 1.19×1010 D. 11.9×1010

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某蔬菜經(jīng)營(yíng)戶從蔬菜批發(fā)市場(chǎng)批發(fā)蔬菜進(jìn)行零售,部分蔬菜批發(fā)價(jià)格與零售價(jià)格如表:

蔬菜品種

西紅柿

青椒

西蘭花

豆角

批發(fā)價(jià)(元/㎏)

3.6

5.4

8

4.8

零售價(jià)(元/㎏)

5.4

8.4

14

7.6

請(qǐng)解答下列問(wèn)題:

(1)第一天,該經(jīng)營(yíng)戶批發(fā)西紅柿和西蘭花兩種蔬菜共300㎏,用去了1520元錢,這兩種蔬菜當(dāng)天全部售完一共賺了多少元錢?

(2)第二天,該經(jīng)營(yíng)戶用1520元仍然批發(fā)西紅柿和西蘭花,要想當(dāng)天全部售完后所賺錢數(shù)不少于1050元,則該經(jīng)營(yíng)戶最多能批發(fā)西紅柿多少㎏?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知一個(gè)多邊形的內(nèi)角和是900°,則這個(gè)多邊形是幾邊形?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】從下列不等式中選擇一個(gè)與x+1≥2組成不等式組,若要使該不等式組的解集為x≥1,則可以選擇的不等式是( 。

A. x2 B. x2 C. x0 D. x0

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】若某次數(shù)學(xué)考試標(biāo)準(zhǔn)成績(jī)定為85分,規(guī)定高于標(biāo)準(zhǔn)記為正,兩位學(xué)生的成績(jī)分別記作+9分和-3分,則第一位學(xué)生的實(shí)際得分為_(kāi)__________分

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】閱讀下面的材料:

如圖1,在數(shù)軸上A點(diǎn)衰示的數(shù)為a,B點(diǎn)表示的數(shù)為b,則點(diǎn)A到點(diǎn)B的距離記為AB.線段AB的長(zhǎng)可以用右邊的數(shù)減去左邊的數(shù)表示,即AB﹣b﹣a.

請(qǐng)用上面的知識(shí)解答下面的問(wèn)題:

如圖2,一個(gè)點(diǎn)從數(shù)軸上的原點(diǎn)開(kāi)始,先向左移動(dòng)1cm到達(dá)A點(diǎn),再向左移動(dòng)2cm到達(dá)B點(diǎn),然后向右移動(dòng)7cm到達(dá)C點(diǎn),用1個(gè)單位長(zhǎng)度表示1cm.

(1)請(qǐng)你在數(shù)軸上表示出A.B.C三點(diǎn)的位置:

(2)點(diǎn)C到點(diǎn)人的距離CA=  cm;若數(shù)軸上有一點(diǎn)D,且AD=4,則點(diǎn)D表示的數(shù)為  ;

(3)若將點(diǎn)A向右移動(dòng)xcm,則移動(dòng)后的點(diǎn)表示的數(shù)為  ;(用代數(shù)式表示)

(4)若點(diǎn)B以每秒2cm的速度向左移動(dòng),同時(shí)A.C點(diǎn)分別以每秒1cm、4cm的速度向右移動(dòng).設(shè)移動(dòng)時(shí)間為t秒,

試探索:CA﹣AB的值是否會(huì)隨著t的變化而改變?請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】一次函數(shù)y=kx+3的圖象經(jīng)過(guò)點(diǎn)P(﹣1,2),則k=

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖 1,二次函數(shù)的圖像過(guò)點(diǎn) A (3,0),B (0,4)兩點(diǎn),動(dòng)點(diǎn) P A 出發(fā),在線段 AB 上沿 A B 的方向以每秒 2 個(gè)單位長(zhǎng)度的速度運(yùn)動(dòng),過(guò)點(diǎn)P PDy 于點(diǎn) D ,交拋物線于點(diǎn) C 設(shè)運(yùn)動(dòng)時(shí)間為 t (秒).

1)求二次函數(shù)的表達(dá)式;

(2)連接 BC ,當(dāng)t時(shí),求BCP的面積;

(3)如圖 2,動(dòng)點(diǎn) P A 出發(fā)時(shí),動(dòng)點(diǎn) Q 同時(shí)從 O 出發(fā),在線段 OA 上沿 OA 的方向以 1個(gè)單位長(zhǎng)度的速度運(yùn)動(dòng),當(dāng)點(diǎn) P B 重合時(shí),P 、 Q 兩點(diǎn)同時(shí)停止運(yùn)動(dòng),連接 DQ 、 PQ ,將DPQ沿直線 PC 折疊到 DPE 在運(yùn)動(dòng)過(guò)程中,設(shè) DPE OAB重合部分的面積為 S ,直接寫(xiě)出 S t 的函數(shù)關(guān)系式及 t 的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案