【題目】若變量z是變量y的函數(shù),同時變量y是變量x的函數(shù),那么我們把變量z叫做變量x的“迭代函數(shù)”.

例如:z2y3,yx1,則z2x132x1,那么z2x1就是zx之間的“迭代函數(shù)”解析式.

1)當2006x2020時,zy2,,請求出zx之間的“迭代函數(shù)”的解析式及z的最小值;

2)若z2ya,yax24axba0,當1x3時,“迭代函數(shù)”z的取值范圍為1z17,求ab的值;

3)已知一次函數(shù)yax1經過點1,2,zay2b2ycb4(其中a、bc均為常數(shù)),聰明的你們一定知道“迭代函數(shù)”zx的二次函數(shù),若x1、x2x1x2)是“迭代函數(shù)”z3的兩個根,點x3,2是“迭代函數(shù)”z的頂點,而且x1、x2、x3還是一個直角三角形的三條邊長,請破解“迭代函數(shù)”z關于x的函數(shù)解析式.

【答案】1z= -x+6;-1004;(2;(3

【解析】

1)把代入zy2中化簡即可得出答案;

(2)把yax24axba0代入z2ya整理得z=2a(x-2) 2-7a+2b,再分兩種情況討論,分別得方程組,求解即可得;

(3)把(1,2)代入y=ax+1解得a=1,得出y=x+1,再將y=x+1代入z=ay2+b-2y+c-b+4,根據(jù)點x3,2迭代函數(shù)”z的頂點得出,再根據(jù)當z=3時, 解得,又x1x2、x3是一個直角三角形的三條邊長得,代入解得b=-8,c=15,從而得解。

解:(1)把代入zy2中得:

z2= -x+6

-0,

z隨著x的增大而減小,

2006 x2020 ,

∴當x=2020時,z有最小值,最小值為z= -×2020+6=-1004

故答案為:z= -x+6;-1004

2)把yax24axba0代入z2ya,得

z2ax24axba

=2ax28axba,

=2a(x-2) 2-7a+2b

這是一個二次函數(shù),圖象的對稱軸是直線x=2,

a0時,由函數(shù)圖象的性質可得x=-1時,z=17;x=3時,z=-1;

解得

a0時,由函數(shù)圖象的性質可得x=-1時,z=-1;x=3時,z=17;

解得

綜上,

3)把(12)代入y=ax+1a+1=2

解得a=1

y=x+1

y=x+1代入z=ay2+b-2y+c-b+4并整理得

∵點x3,2迭代函數(shù)”z的頂點,

整理得

z=3時,

解得

又∵x1x2

x1 x3x2

又∵x1x2、x3還是一個直角三角形的三條邊長

解得

代入

解得c=15

故答案為:

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】小蟲從點A出發(fā)在一條直線上來回爬行,假定向右爬行的路程記為正數(shù),向左爬行的路程記為負數(shù),爬行的路程依次為:(單位:cm)①+5,②-3,③+10,④-8,⑤-6,⑥+11,⑦-9

1)小蟲最后是否回到出發(fā)點A,說明理由;

2)小蟲在第幾次爬行后離點A最遠,此時距離點A多少厘米?

3)在爬行過程中,如果每爬行1厘米獎勵一粒芝麻,那么小蟲一共得到多少粒芝麻?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在 ABCD中,CD=2AD,BEAD于點E,F(xiàn)DC的中點,連結EF、BF,下列結論:①∠ABC=2ABF;EF=BF;S四邊形DEBC=2SEFB④∠CFE=3DEF,其中正確結論的個數(shù)共有( ).

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】綜合與探究:

如圖,拋物線y=x2x4x軸交與AB兩點(點B在點A的右側),與y軸交于點C,連接BC,以BC為一邊,點O為對稱中心作菱形BDEC,點Px軸上的一個動點,設點P的坐標為(m0),過點Px軸的垂線l交拋物線于點Q

1)求點A,B,C的坐標.

2)當點P在線段OB上運動時,直線l分別交BD,BC于點M,N.試探究m為何值時,四邊形CQMD是平行四邊形,此時,請判斷四邊形CQBM的形狀,并說明理由.

3)當點P在線段EB上運動時,是否存在點Q,使BDQ為直角三角形?若存在,請直接寫出點Q的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】計算:

1)-37;

2

3)-0.5+(15.5)(17)|12|;

4 ;

5 ;

6(用簡便方法計算)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點上的中點,,垂足分別是點.

(1),求證:;

(2),求證:四邊形是矩形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,ABC為直角三角形,∠C=90°,BC=2cm,A=30°,四邊形DEFG為矩形,DE=2cm,EF=6cm,且點C、B、E、F在同一條直線上,點B與點E重合.RtABC以每秒1cm的速度沿矩形DEFG的邊EF向右平移,當點C與點F重合時停止.設RtABC與矩形DEFG的重疊部分的面積為ycm2,運動時間xs.能反映ycm2xs之間函數(shù)關系的大致圖象是( 。

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】自中央出臺“厲行節(jié)約、反對浪費”八項規(guī)定后,某品牌高檔酒銷量銳減,進入四月份后,經銷商為擴大銷量,每瓶酒比三月份降價500元,如果賣出相同數(shù)量的高檔酒,三月份銷售額為4.5萬元,四月份銷售額只有3萬元.

1)求三月份每瓶高檔酒售價為多少元?

2)為了提高利潤,該經銷商計劃五月份購進部分大眾化的中低檔酒銷售.已知高檔酒每瓶進價為800元,中低檔酒每瓶進價為400元.現(xiàn)用不超過5.5萬元的預算資金購進兩種酒共100瓶,且高檔酒至少購進35瓶,請計算說明有幾種進貨方案?

3)該商場計劃五月對高檔酒進行促銷活動,決定在四月售價基礎上每售出一瓶高檔酒再送顧客價值元的代金券,而中低檔酒銷售價為550元/瓶.要使(2)中所有方案獲利恰好相同,請確定的值,并說明此時哪種方案對經銷商更有利?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,ABC中,點O是邊AC上一個動點,過O作直線MNBC.設MN交∠ACB的平分線于點E,交∠ACB的外角平分線于點F

1)求證:OEOF

2)當點O在邊AC上運動到什么位置時,四邊形AECF是矩形?并說明理由.

查看答案和解析>>

同步練習冊答案