【題目】如圖,是的直徑,,,是上的三點,,點是的中點,點是上一動點,若的半徑為1,則的最小值為( )
A.1B.C.D.
【答案】C
【解析】
作點B關(guān)于MN的對稱點B′,連接OA、OB、OB′、AB′,根據(jù)軸對稱確定最短路線問題可得PA+PB的最小值=AB′,根據(jù)在同圓或等圓中,同弧所對的圓心角等于圓周角的2倍求出∠AOM=120°,然后可得∠AON=60°,再求出∠BON=30°,根據(jù)對稱性可得∠B′ON=∠BON=30°,然后易得∠AOB′=90°,從而判斷出△AOB′是等腰直角三角形,再根據(jù)等腰直角三角形的性質(zhì)可得AB′的長度.
解:作點B關(guān)于MN的對稱點B′,連接OA、OB、OB′、AB′,則PA+PB的最小值=AB′,
∵∠ACM=60°,
∴∠AOM=120°,
∴∠AON=180°-∠AOM=60°,
∵點B為的中點,
∴∠BON=∠AON=×60°=30°,
由對稱性可得,∠B′ON=∠BON=30°,
∴∠AOB′=∠AON+∠B′ON=60°+30°=90°,
∴△AOB′是等腰直角三角形,
∴AB′=OA=,即PA+PB的最小值為.
故選:C.
科目:初中數(shù)學 來源: 題型:
【題目】把一張矩形紙片ABCD按如圖方式折疊,使頂點B和頂點D重合,折痕為EF,若BF=4, AE=2,則∠DEF的度數(shù)是_____。
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,正方形網(wǎng)格中的每個小正方形的邊長都是1,每個小正方形的頂點叫做格點.△ABC的三個頂點A,B,C都在格點上.將△ABC繞點A按順時針方向旋轉(zhuǎn)90°得到△AB′C′.
(1)在正方形網(wǎng)格中,畫出△AB′C′;
(2)計算線段AB在變換到AB′的過程中掃過的區(qū)域的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,點C、D在線段AB上,△PCD是等邊三角形,且CD2=ADBC.
(1)求證:△APD∽△PBC;
(2)求∠APB的度數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(2016·寧夏中考)如圖,已知△ABC,以AB為直徑的⊙O分別交AC于D,BC于E,連接ED,若ED=EC.
(1)求證:AB=AC;
(2)若AB=4,BC=2 ,求CD的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知關(guān)于x的一元二次方程x2+(2k+1)x+k2=0①有兩個不相等的實數(shù)根.
(1)求k的取值范圍;
(2)設(shè)方程①的兩個實數(shù)根分別為x1,x2,當k=1時,求x12+x22的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,∠A<∠B,沿△ABC的中線CM將△CMA折疊,使點A落在點D處,若CD恰好與MB垂直,則tanA的值為__________________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,在△ABC中,AB=AC,BC=m,D,E分別是AB,AC邊的中點,點P為BC邊上的一個動點,連接PD,PA,PE.設(shè)PC=x,圖1中某條線段長為y,若表示y與x的函數(shù)關(guān)系的圖象大致如圖2所示,則這條線可能是( 。
A.PBB.PEC.PAD.PD
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com