【題目】一件夾克衫先按成本提高50%標(biāo)價(jià),再以8折(標(biāo)價(jià)的80%)出售,結(jié)果獲利28元,若設(shè)這件夾克衫的成本是x元,根據(jù)題意,可得到的方程是( 。
A.(1+50%)x×80%=x﹣28
B.(1+50%)x×80%=x+28
C.(1+50%x)×80%=x﹣28
D.(1+50%x)×80%=x+28

【答案】B
【解析】解:標(biāo)價(jià)為:x(1+50%),
八折出售的價(jià)格為:(1+50%)x×80%;
∴可列方程為:(1+50%)x×80%=x+28,
故選B.
根據(jù)售價(jià)的兩種表示方法解答,關(guān)系式為:標(biāo)價(jià)×80%=進(jìn)價(jià)+28,把相關(guān)數(shù)值代入即可.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,A(1,0)、點(diǎn)B在y軸上,將三角形OAB沿x軸負(fù)方向平移,平移后的圖形為三角形DEC,且點(diǎn)C的坐標(biāo)為(-3,2).
(1)直接寫出點(diǎn)E的坐標(biāo) ______ ;
(2)在四邊形ABCD中,點(diǎn)P從點(diǎn)B出發(fā),沿“BC→CD”移動(dòng).若點(diǎn)P的速度為每秒1個(gè)單位長(zhǎng)度,運(yùn)動(dòng)時(shí)間為t秒,回答下列問題:
當(dāng)t= ______ 秒時(shí),點(diǎn)P的橫坐標(biāo)與縱坐標(biāo)互為相反數(shù);
求點(diǎn)P在運(yùn)動(dòng)過程中的坐標(biāo),(用含t的式子表示,寫出過程);

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC,AB=ACDE垂直平分AB,D為垂足交ACE.

1)若∠A=50°,求∠EBC的度數(shù);

2)若,BEC的周長(zhǎng)是11,求ABC的周長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】探索規(guī)律,觀察下面算式,解答問題.

1+3 =4 =22;

1+3+5=9=32;

1+3+5+7=16=42;

1+3+5+7+9=25=52;

(1)請(qǐng)猜想1+3+5+7+9+…+19=

(2)請(qǐng)猜想1+3+5+7+9+…+(2n-1)+(2n +1)+(2n +3)=

(3)試計(jì)算:101 +103+…+197 +199.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,某住宅小區(qū)在施工過程中留下了一塊空地(圖中的四邊形ABCD),經(jīng)測(cè)量,在四邊形ABCD中,AB=3m,BC=4m,CD=12m,DA=13m,∠B=90°.

(1)△ACD是直角三角形嗎?為什么?

(2)小區(qū)為美化環(huán)境,欲在空地上鋪草坪,已知草坪每平方米100元,試問鋪滿這塊空地共需花費(fèi)多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知在ABC中,AB=AC,BAC=90°,分別過B、C向過A的直線作垂線,垂足分別為E、F.

(1)如圖①過A的直線與斜邊BC不相交時(shí),求證:EF=BE+CF;

(2)如圖②過A的直線與斜邊BC相交時(shí),其他條件不變,若BE=10,CF=3,求:FE長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,l1l2分別表示一種白熾燈和一種節(jié)能燈的費(fèi)用y(元)與照明時(shí)間x(小時(shí))的函數(shù)關(guān)系圖象,假設(shè)兩種燈的使用壽命都是2000小時(shí),照明效果一樣.(費(fèi)用=燈的售價(jià)+電費(fèi))

1)根據(jù)圖象分別求出l1,l2的函數(shù)關(guān)系式;

2)當(dāng)照明時(shí)間為多少時(shí),兩種燈的費(fèi)用相等?

3)小亮房間計(jì)劃照明2500小時(shí),他買了一個(gè)白熾燈和一個(gè)節(jié)能燈,請(qǐng)你幫他設(shè)計(jì)最省錢的用燈方法.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知x=1是一元二次方程x2+ax+b=0的一個(gè)根,則a2+2ab+b2的值為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】把一條彎曲的公路改成直道,可以縮短路程.用幾何知識(shí)解釋其道理正確的是( )

A.兩點(diǎn)確定一條直線 B.垂線段最短

C.兩點(diǎn)之間線段最短 D.三角形兩邊之和大于第三邊

查看答案和解析>>

同步練習(xí)冊(cè)答案