【題目】如圖所示,A(1,0)、點(diǎn)B在y軸上,將三角形OAB沿x軸負(fù)方向平移,平移后的圖形為三角形DEC,且點(diǎn)C的坐標(biāo)為(-3,2).
(1)直接寫出點(diǎn)E的坐標(biāo) ______ ;
(2)在四邊形ABCD中,點(diǎn)P從點(diǎn)B出發(fā),沿“BC→CD”移動.若點(diǎn)P的速度為每秒1個(gè)單位長度,運(yùn)動時(shí)間為t秒,回答下列問題:
①當(dāng)t= ______ 秒時(shí),點(diǎn)P的橫坐標(biāo)與縱坐標(biāo)互為相反數(shù);
②求點(diǎn)P在運(yùn)動過程中的坐標(biāo),(用含t的式子表示,寫出過程);
【答案】(1)(-2,0);(2)①2;②(-t,2)或(-3,5-t).
【解析】試題分析:(1)根據(jù)平移得性質(zhì)和點(diǎn)的特點(diǎn)得到0E=2,即可;
(2)①根據(jù)點(diǎn)P的橫坐標(biāo)與縱坐標(biāo)互為相反數(shù),得到點(diǎn)P在線段BC上即可;
②分兩種情況,點(diǎn)P在線段BC上和在線段CD上分別進(jìn)行計(jì)算即可.
試題解析:(1)∵A(1,0),
∴OA=1,
∵將三角形OAB沿x軸負(fù)方向平移,平移后的圖形為三角形DEC,且點(diǎn)C的坐標(biāo)為(-3,2),
∴BC=3,
∴AE=3,
∴OE=2,
∴E(-2,0)
(2)①∵C(-2,0),
∴BC=3,CD=2,
∵點(diǎn)P的橫坐標(biāo)與縱坐標(biāo)互為相反數(shù),
∴點(diǎn)P在線段BC上,
∴PB=CD=2,
∴t=2,
當(dāng)t=2時(shí),點(diǎn)P的橫坐標(biāo)和縱坐標(biāo)互為相反數(shù);
②當(dāng)點(diǎn)P在線段BC上時(shí),PB=t,
∴P(-t,2),
當(dāng)點(diǎn)P在線段CD上時(shí),
∵BC=3,CD=2,
∴PD=5-t,
∴P(-3,5-t).
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一輛轎車和一輛貨車分別從甲、乙兩地同時(shí)出發(fā),勻速相向而行,相遇后繼續(xù)前行,已知兩車相遇時(shí)轎車比貨車多行駛了90千米,設(shè)行駛的時(shí)間為x(小時(shí)),兩車之間的距離為y(千米),圖中的折線表示從兩車出發(fā)至轎車到達(dá)乙地這一過程中y與x之間的函數(shù)關(guān)系.根據(jù)圖像提供的信息,解答下列問題:
(1)求線段AB所在直線的函數(shù)關(guān)系式,并求甲、乙兩地的距離;
(2)求兩車的速度;
(3)求點(diǎn)C的坐標(biāo),并寫出點(diǎn)C的實(shí)際意義.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知一次函數(shù)圖象經(jīng)過A(-4,-9)和B(3, 5)兩點(diǎn),與x軸的交于點(diǎn)C,與y軸的交于點(diǎn)D,
(1)求該一次函數(shù)解析式;
(2)點(diǎn)C坐標(biāo)為___________ ,點(diǎn)D坐標(biāo)為___________ ;
(3)求該一次函數(shù)圖象和坐標(biāo)軸圍成的圖形面積。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一件夾克衫先按成本提高50%標(biāo)價(jià),再以8折(標(biāo)價(jià)的80%)出售,結(jié)果獲利28元,若設(shè)這件夾克衫的成本是x元,根據(jù)題意,可得到的方程是( )
A.(1+50%)x×80%=x﹣28
B.(1+50%)x×80%=x+28
C.(1+50%x)×80%=x﹣28
D.(1+50%x)×80%=x+28
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com