精英家教網(wǎng)如圖,在直角坐標(biāo)系xoy中,O是坐標(biāo)原點(diǎn),點(diǎn)A在x正半軸上,OA=12
3
cm,點(diǎn)B在y軸的正半軸上,OB=12cm,動(dòng)點(diǎn)P從點(diǎn)O開(kāi)始沿OA以2
3
cm/s的速度向點(diǎn)A移動(dòng),動(dòng)點(diǎn)Q從點(diǎn)A開(kāi)始沿AB以4cm/s的速度向點(diǎn)B移動(dòng),動(dòng)點(diǎn)R從點(diǎn)B開(kāi)始沿BO以2cm/s的速度向點(diǎn)O移動(dòng).如果P、Q、R分別從O、A、B同時(shí)移動(dòng),移動(dòng)時(shí)間為t(0<t<6)s.
(1)求∠OAB的度數(shù).
(2)以O(shè)B為直徑的⊙O′與AB交于點(diǎn)M,當(dāng)t為何值時(shí),PM與⊙O′相切?
(3)寫(xiě)出△PQR的面積S隨動(dòng)點(diǎn)移動(dòng)時(shí)間t的函數(shù)關(guān)系式,并求s的最小值及相應(yīng)的t值.
(4)是否存在△APQ為等腰三角形?若存在,求出相應(yīng)的t值;若不存在請(qǐng)說(shuō)明理由.
分析:(1)在Rt△OAB中,已知了OA、OB的長(zhǎng),即可求出∠OAB的正切值,由此可得到∠OAB的度數(shù);
(2)連接O′M,當(dāng)PM與⊙O′相切時(shí),PM、PO同為⊙O′的切線,易證得△OO′P≌△MO′P,則∠OO′P=∠MO′P;在(1)中易得∠OBA=60°,即△O′BM是等邊三角形,由此可得到∠BO′M=∠PO′M=∠PO′O=60°;在Rt△OPO′中,根據(jù)∠PO′O的度數(shù)及OO′的長(zhǎng)即可求得OP的長(zhǎng),已知了P點(diǎn)的運(yùn)動(dòng)速度,即可根據(jù)時(shí)間=路程÷速度求得t的值;
(3)過(guò)Q作QE⊥x軸于E,在Rt△AQE中,可用t表示出AQ的長(zhǎng),進(jìn)而根據(jù)∠OAB的度數(shù)表示出QE、AE的長(zhǎng),由S△PQR=S△OAB-S△OPR-S△APQ-S△BRQ即可求得S、t的函數(shù)關(guān)系式;根據(jù)所得函數(shù)的性質(zhì)及自變量的取值范圍即可求出S的最小值及對(duì)應(yīng)的t的值;
(4)由于△APQ的腰和底不確定,需分類討論:
①AP=AQ,可分別用t表示出兩條線段的長(zhǎng),然后根據(jù)它們的等量關(guān)系求出此時(shí)t的值;
②PQ=AQ,過(guò)點(diǎn)Q作QD⊥x軸于D,根據(jù)等腰三角形三線合一的性質(zhì)知:PA=2AD;可分別用t表示出PA、AD的長(zhǎng),然后根據(jù)它們的等量關(guān)系列方程求解;
③AP=PQ,過(guò)點(diǎn)Q做QH⊥AQ于H,方法同②.
解答:精英家教網(wǎng)解:(1)在Rt△AOB中:
tan∠OAB=
OB
OA
=
12
12
3
=
3
3
,
∴∠OAB=30°.

(2)如圖,連接O′P,O′M.
當(dāng)PM與⊙O′相切時(shí),有:
∠PMO′=∠POO′=90°,
△PMO′≌△POO′.
由(1)知∠OBA=60°,
∵O′M=O′B,
∴△O′BM是等邊三角形,
∴∠BO′M=60°.
可得∠OO′P=∠MO′P=60°.
∴OP=OO′•tan∠OO′P
=6×tan60°=6
3

又∵OP=2
3
t,
2
3
t=6
3
,t=3.
即:t=3時(shí),PM與⊙O‘相切.

(3)如圖,過(guò)點(diǎn)Q作QE⊥x于點(diǎn)E.
∵∠BAO=30°,AQ=4t,
∴QE=
1
2
AQ=2t,
AE=AQ•cos∠OAB=4t×
3
2
=2
3
t

∴OE=OA-AE=12
3
-2
3
t.
∴Q點(diǎn)的坐標(biāo)為(12
3
-2
3
t,2t),
S△PQR=S△OAB-S△OPR-S△APQ-S△BRQ
=
1
2
•12•12
3
-
1
2
•2
3
t•(12-2t)-
1
2
(12
3
-2
3
t)•2t-
1
2
•2t(12
3
-2
3
t)

=6
3
t2-36
3
t+72
3

=6
3
(t-3)2+18
3
. (0<t<6)
當(dāng)t=3時(shí),S△PQR最小=18
3
;

(4)分三種情況:如圖
①當(dāng)AP=AQ1=4t時(shí),
∵OP+AP=12
3
,精英家教網(wǎng)
2
3
t+4t=12
3

∴t=
6
3
3
+2
,
或化簡(jiǎn)為t=12
3
-18;
②當(dāng)PQ2=AQ2=4t時(shí),
過(guò)Q2點(diǎn)作Q2E⊥x軸于點(diǎn)E.
∴PA=2AE=2AQ2•cosA=4
3
t,
2
3
t+4
3
t=12
3
,
∴t=2;
③當(dāng)PA=PQ3時(shí),過(guò)點(diǎn)P作PH⊥AB于點(diǎn)H.
AH=PA•cos30°=(12
3
-2
3
t)•
3
2
=18-3t,
AQ3=2AH=36-6t,
得36-6t=4t,
∴t=3.6.
綜上所述,當(dāng)t=2或t=3.6或t=12
3
-18時(shí),△APQ是等腰三角形.
點(diǎn)評(píng):此題考查了切線的判定、全等三角形的判定和性質(zhì)、二次函數(shù)的應(yīng)用以及等腰三角形的判定和性質(zhì)等知識(shí),需注意的是(4)題在不確定等腰三角形腰和底的情況下,要充分考慮到各種可能的情況,以免漏解.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,在直角坐標(biāo)系中,⊙M與y軸相切于點(diǎn)C,與x軸交于A(x1,0),B(x2,0)兩點(diǎn),其中x1,x2是方程x2-10x+16=0的兩個(gè)根,且x1<x2,連接MC,過(guò)A、B、C三點(diǎn)的拋物線的頂點(diǎn)為N.
(1)求過(guò)A、B、C三點(diǎn)的拋物線的解析式;
(2)判斷直線NA與⊙M的位置關(guān)系,并說(shuō)明理由;
(3)一動(dòng)點(diǎn)P從點(diǎn)C出發(fā),以每秒1個(gè)單位長(zhǎng)的速度沿CM向點(diǎn)M運(yùn)動(dòng),同時(shí),一動(dòng)點(diǎn)Q從點(diǎn)B出發(fā),沿射線BA以每秒4個(gè)單位長(zhǎng)度的速度運(yùn)動(dòng),當(dāng)P運(yùn)動(dòng)到M點(diǎn)時(shí),兩動(dòng)點(diǎn)同時(shí)停止運(yùn)動(dòng),當(dāng)時(shí)間t為何值時(shí),以Q、O、C為頂點(diǎn)的三角形與△PCO相似?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖:在直角坐標(biāo)系中放入一邊長(zhǎng)OC為6的矩形紙片ABCO,將紙翻折后,使點(diǎn)B恰好落在x軸上,記為B',折痕為CE,已知tan∠OB′C=
3
4

(1)求出B′點(diǎn)的坐標(biāo);
(2)求折痕CE所在直線的解析式;
(3)作B′G∥AB交CE于G,已知拋物線y=
1
8
x2-
14
3
通過(guò)G點(diǎn),以O(shè)為圓心OG的長(zhǎng)為精英家教網(wǎng)半徑的圓與拋物線是否還有除G點(diǎn)以外的交點(diǎn)?若有,請(qǐng)找出這個(gè)交點(diǎn)坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已如:如圖,在直角坐標(biāo)系中,以y軸上的點(diǎn)C為圓心,2為半徑的圓與x軸相切于原點(diǎn)O,AB為⊙C的直徑,PA切⊙O于點(diǎn)A,交x軸的負(fù)半軸于點(diǎn)P,連接PC交OA于點(diǎn)D.
(1)求證:PC⊥OA;
(2)若點(diǎn)P在x軸的負(fù)半軸上運(yùn)動(dòng),原題的其他條件不變,設(shè)點(diǎn)P的坐標(biāo)為(x,0),四邊形
POCA的面積為S,求S與點(diǎn)P的橫坐標(biāo)x之間的函數(shù)關(guān)系式;
(3)在(2)的情況下,分析并判斷是否存在這樣的一點(diǎn)P,使S四邊形POCA=S△AOB,若存在,直接寫(xiě)出點(diǎn)P的坐標(biāo)(不寫(xiě)過(guò)程);若不存在,簡(jiǎn)要說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖:在直角坐標(biāo)系中描出A(-4,-4),B(1,-4),C(2,-1),D(-3,-1)四個(gè)點(diǎn).
(1)順次連接A,B,C,D四個(gè)點(diǎn)組成的圖形是什么圖形?
(2)畫(huà)出(1)中圖形分別向上5個(gè)單位向右3個(gè)單位后的圖形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,在直角坐標(biāo)系中,A的坐標(biāo)為(a,0),D的坐標(biāo)為(0,b),且a、b滿足
a+2
+(b-4)2=0

(1)求A、D兩點(diǎn)的坐標(biāo);
(2)以A為直角頂點(diǎn)作等腰直角三角形△ADB,直接寫(xiě)出B的坐標(biāo);
(3)在(2)的條件下,當(dāng)點(diǎn)B在第四象限時(shí),將△ADB沿直線BD翻折得到△A′DB,點(diǎn)P為線段BD上一動(dòng)點(diǎn)(不與B、D重合),PM⊥PA交A′B于M,且PM=PA,MN⊥PB于N,請(qǐng)?zhí)骄浚篜D、PN、BN之間的數(shù)量關(guān)系.

查看答案和解析>>

同步練習(xí)冊(cè)答案