【題目】在平面直角坐標系xOy中,頂點為A的拋物線與x軸交于B、C兩點,與y軸交于點D,已知A(1,4)B(30)

(1)求拋物線對應的二次函數(shù)表達式;

(2)探究:如圖1,連接OA,作DE∥OABA的延長線于點E,連接OEAD于點F,MBE的中點,則OM是否將四邊形OBAD分成面積相等的兩部分?請說明理由;

(3)應用:如圖2P(m,n)是拋物線在第四象限的圖象上的點,且m+n=﹣1,連接PAPC,在線段PC上確定一點M,使AN平分四邊形ADCP的面積,求點N的坐標.提示:若點A、B的坐標分別為(x1y1)、(x2y2),則線段AB的中點坐標為(,)

【答案】(1)y=﹣x2+2x3;(2)OM將四邊形OBAD分成面積相等的兩部分,理由見解析;(3)N(,﹣)

【解析】

(1)函數(shù)表達式為:ya(x1)2+4,將點B坐標的坐標代入上式,即可求解;

(2)利用同底等高的兩個三角形的面積相等,即可求解;

(3)(2)知:點NPQ的中點,根據(jù)C,P點的坐標求出直線PC的解析式,同理求出AC,DQ的解析式,并聯(lián)立方程求出Q點的坐標,從而即可求N點的坐標.

(1)函數(shù)表達式為:ya(x1)2+4,

將點B坐標的坐標代入上式得:0a(31)2+4,

解得:a=﹣1,

故拋物線的表達式為:y=﹣x2+2x3;

(2)OM將四邊形OBAD分成面積相等的兩部分,理由:

如圖1,∵DEAO,SODASOEA,

SODA+SAOMSOEA+SAOM,即:S四邊形OMADSOBM,

SOMESOBM,

S四邊形OMADSOBM;

(3)設(shè)點P(m,n),n=﹣m2+2m+3,而m+n=﹣1

解得:m=﹣14,故點P(4,﹣5);

如圖2,故點DQDACPC的延長線于點Q,

(2)知:點NPQ的中點,

設(shè)直線PC的解析式為y=kx+b,

將點C(1,0)、P(4,﹣5)的坐標代入得:

解得:,

所以直線PC的表達式為:y=﹣x1…①,

同理可得直線AC的表達式為:y2x+2,

直線DQCA,且直線DQ經(jīng)過點D(03),

同理可得直線DQ的表達式為:y2x+3…②,

聯(lián)立①②并解得:x=﹣,即點Q(,)

∵點NPQ的中點,

由中點公式得:點N(,﹣)

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】某射箭隊準備從王方、李明二人中選拔1人參加射箭比賽,在選拔賽中,兩人各射箭10次的成績(單位:環(huán)數(shù))如下:

次數(shù)

1

2

3

4

5

6

7

8

9

10

王方

7

10

9

8

6

9

9

7

10

10

李明

8

9

8

9

8

8

9

8

10

8

(1)根據(jù)以上數(shù)據(jù),將下面兩個表格補充完整:

王方10次射箭得分情況

環(huán)數(shù)

6

7

8

9

10

頻數(shù)

______

______

______

______

______

頻率

______

______

______

______

______

李明10次射箭得分情況

環(huán)數(shù)

6

7

8

9

10

頻數(shù)

______

______

______

______

______

頻率

______

______

______

______

______

(2)分別求出兩人10次射箭得分的平均數(shù);

(3)從兩人成績的穩(wěn)定性角度分析,應選派誰參加比賽合適.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某校為了解九年級學生的體育達標情況,隨機抽取名九年級學生進行體育達標項目測試,測試成績?nèi)缦卤,請根?jù)表中的信息,解答下列問題:

1)該校九年級有名學生,估計體育測試成績?yōu)?/span>分的學生人數(shù);

2)該校體育老師要對本次抽測成績?yōu)?/span>分的甲、乙、丙、丁名學生進行分組強化訓練,要求兩人一組,求甲和乙恰好分在同一組的概率.(用列表或樹狀圖方法解答)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】天門山索道是世界最長的高山客運索道,位于張家界天門山景區(qū).在一次檢修維護中,檢修人員從索道A處開始,沿ABC路線對索道進行檢修維護.如圖:已知米,米,AB與水平線的夾角是BC與水平線的夾角是.求:本次檢修中,檢修人員上升的垂直高度是多少米?(結(jié)果精確到1米,參考數(shù)據(jù):)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,PA、PB為圓O的切線,切點分別為A、BPOAB于點C,PO的延長線交圓O于點D,下列結(jié)論不一定成立的是( )

A. PAPBB. ∠BPD=∠APDC. AB⊥PDD. AB平分PD

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】列方程解應用題:某列車平均提速80km/h,用相同的時間,該列車提速前行駛300km,提速后比提速前多行駛200km,求該列車提速前的平均速度.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某公司有如圖所示的甲、乙、丙、丁四個生產(chǎn)基地.現(xiàn)決定在其中一個基地修建總倉庫,以方便公司對各基地生產(chǎn)的產(chǎn)品進行集中存儲.已知甲、乙、丙、丁各基地的產(chǎn)量之比等于4542,各基地之間的距離之比abcde23433(因條件限制,只有圖示中的五條運輸渠道),當產(chǎn)品的運輸數(shù)量和運輸路程均相等時,所需的運費相等.若要使總運費最低,則修建總倉庫的最佳位置為( 。

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某中學數(shù)學興趣小組在一次課外學習與探究中遇到一些新的數(shù)學符號,他們將其中某些材料摘錄如下:

對于三個實,數(shù),,用表示這三個數(shù)的平均數(shù),用表示這三個數(shù)中最小的數(shù),例如=4,,.請結(jié)合上述材料,解決下列問題:

1)①_____,

_____;

2)若,則的取值范圍為_____;

3)若,求的值;

4)如果,求的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】甲、乙兩個工程隊需完成AB兩個工地的工程.若甲、乙兩個工程隊分別可提供40個和50個標準工作量,完成A、B兩個工地的工程分別需要70個和20個標準工作量,且兩個工程隊在A、B兩個工地的1個標準工作量的成本如下表所示:

A工地

B工地

甲工程隊

800

750

乙工程隊

600

570

設(shè)甲工程隊在A工地投入x20≤x≤40)個標準工作量,完成這兩個工程共需成本y元.

1)求yx之間的函數(shù)關(guān)系式;

2)請判斷y是否能等于62000,并說明理由.

查看答案和解析>>

同步練習冊答案