【題目】已知拋物線和直線l在同一直角坐標(biāo)系中的圖象如圖所示,拋物線的對稱軸為直線x=﹣1,P1(x1,y1),P2(x2,y2)是拋物線上的點(diǎn),P3(x3,y3)是直線l上的點(diǎn),且x3<﹣1<x1<x2,則y1,y2,y3的大小關(guān)系是( 。

A. y1<y2<y3 B. y2<y3<y1 C. y3<y1<y2 D. y2<y1<y3

【答案】D

【解析】因為拋物線的對稱軸為直線x=-1,開口向下,P1x1,y1),P2x2,y2)是拋物線上的點(diǎn),且-1<x1x2,根據(jù)二次函數(shù)的性質(zhì):在對稱軸的右側(cè),yx的增大而減小,可得y2 y1;P3x3y3)是直線l上的點(diǎn),直線yx的增大而減小,且x3<-1,由圖象可知,直線上x3對應(yīng)的函數(shù)值y3大于-1對應(yīng)的函數(shù)值,又因x=-1時,拋物線的頂點(diǎn)最高,可得y3最大,所以y2y1y3故選D.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,Rt△ABC中,∠BAC=90°,AB=AC,點(diǎn)D為BC的中點(diǎn),點(diǎn)E、F分別在邊AB和邊AC上,且∠EDF=90°,則下列結(jié)論一定成立的是_______

①△ADF≌△BDE

②S四邊形AEDF=S△ABC

③BE+CF=AD

④EF=AD

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為推廣陽光體育大課間活動,我市某中學(xué)決定在學(xué)生中開設(shè)A:實心球,B:立定跳遠(yuǎn),C:跳繩,D:跑步四種活動項目.為了了解學(xué)生對四種項目的喜歡情況,隨機(jī)抽取了部分學(xué)生進(jìn)行調(diào)查,并將調(diào)查結(jié)果繪制成如圖①②的統(tǒng)計圖.請結(jié)合圖中的信息解答下列問題:

1)在這項調(diào)查中,共調(diào)查了多少名學(xué)生?

2)請計算本項調(diào)查中喜歡立定跳遠(yuǎn)的學(xué)生人數(shù)和所占百分比,并將兩個統(tǒng)計圖補(bǔ)充完整;

3)若調(diào)查到喜歡跳繩5名學(xué)生中有3名男生,2名女生.現(xiàn)從這5名學(xué)生中任意抽取2名學(xué)生.請用畫樹狀圖或列表的方法,求出剛好抽到同性別學(xué)生的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,等腰三角形的一邊軸的正半軸上,點(diǎn)的坐標(biāo)為 ,動點(diǎn)從原點(diǎn)出發(fā),在線段上以每秒2個單位的速度向點(diǎn)勻速運(yùn)動,動點(diǎn)從原點(diǎn)出發(fā),沿軸的正半軸以每秒1個單位的速度向上勻速運(yùn)動,過點(diǎn)軸的平行線分別交,設(shè)動點(diǎn),同時出發(fā),當(dāng)點(diǎn)到達(dá)點(diǎn)時,點(diǎn)也停止運(yùn)動,他們運(yùn)動的時間為

1)點(diǎn)的坐標(biāo)為_____,的坐標(biāo)為____;

2)當(dāng)為何值時,四邊形為平行四邊形;

3)是否存在某一時刻,使為直角三角形?若存在,請求出此時的值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知直線l1∥l2,直線l3和直線l1、l2交于點(diǎn)CD,在直線l3上有點(diǎn)P(點(diǎn)P與點(diǎn)C、D不重合),點(diǎn)A在直線l1上,點(diǎn)B在直線l2上。

(1)如果點(diǎn)PC、D之間運(yùn)動時,試說明∠1+∠3=∠2;

(2)如果點(diǎn)P在直線l1的上方運(yùn)動時,試探索∠1,∠2,∠3之間的關(guān)系又是如何?

(3)如果點(diǎn)P在直線l2的下方運(yùn)動時,試探索∠PAC,∠PBD,∠APB之間的關(guān)系又是如何? (直接寫出結(jié)論)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,四邊形ABCD四條邊上的中點(diǎn)分別為EFGH,順次連接EFFGGHHE,得到四邊形EFGH(即四邊形ABCD的中點(diǎn)四邊形).

1)四邊形EFGH的形狀是 ,證明你的結(jié)論.

2)當(dāng)四邊形ABCD的對角線滿足 條件時,四邊形EFGH是矩形;

3)結(jié)合問題(2),請做出圖形并且證明

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀材料:

把代數(shù)式通過配湊等手段得到局部完全平方式,再進(jìn)行有關(guān)計算和解題,這種解題方法叫做配方法.

如(1)用配方法分解因式:.

解:原式=

=

2M=,利用配方法求M的最小值.

解:M=

=

M有最小值1.

請根據(jù)上述材料,解決下列問題:

1)在橫線上添加一個常數(shù),使之成為完全平方式:

2)用配方法分解因式:

3)若M=,求M的最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形紙片中,邊上一點(diǎn)所疊紙片使點(diǎn)與點(diǎn)重合,其中為折痕,連結(jié)

(1)求證:四邊形是菱形;

(2)若,求的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列說法中,正確的是( 。

A. 打開電視機(jī),正在播廣告,是必然事件

B. 在連續(xù)5次的數(shù)學(xué)測試中,兩名同學(xué)的平均分相同,方差較大的同學(xué)數(shù)學(xué)成績更穩(wěn)定

C. 某同學(xué)連續(xù)10次拋擲質(zhì)量均勻的硬幣,3次正面向上,因此正面向上的概率是30%

D. 從一個只裝有白球的缸里摸出一個球,摸出的球是白球

查看答案和解析>>

同步練習(xí)冊答案