【題目】如圖,在矩形紙片中,邊上一點所疊紙片使點與點重合,其中為折痕,連結(jié)

(1)求證:四邊形是菱形;

(2)若,求的長.

【答案】(1)見解析;(2)

【解析】

(1)利用對稱的性質(zhì)得出BM=ME,BN=NE,∠BMN=EMN,進(jìn)而得出BM=ME=BN=NE,即可得出答案;
(2)利用菱形的性質(zhì)結(jié)合勾股定理得出答案.

(1)B、E兩點關(guān)于直線MN對稱,


BM=ME,BN=NE,∠BMN=EMN,
在矩形ABCD中,ADBC
∴∠EMN=MNB,
∴∠BMN=MNB,
BM=BN,
BM=ME=BN=NE,
∴四邊形ECBF是菱形;
(2)設(shè)菱形ECBF的邊長為,
AM=AD-DE-ME==,
RtABM中,

,

∴解得:
NC=BC-BN=8-=

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校組織學(xué)生開展課外社會實踐活動,現(xiàn)有甲、乙兩種大客車可租,已知1輛甲種客車和3輛乙種客車共需租金1 240元,3輛甲種客車和2輛乙種客車共需租金1 760元.求1輛甲種客車和1輛乙種客車的租金分別是多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線和直線l在同一直角坐標(biāo)系中的圖象如圖所示,拋物線的對稱軸為直線x=﹣1,P1(x1,y1),P2(x2,y2)是拋物線上的點,P3(x3,y3)是直線l上的點,且x3<﹣1<x1<x2,則y1,y2,y3的大小關(guān)系是( 。

A. y1<y2<y3 B. y2<y3<y1 C. y3<y1<y2 D. y2<y1<y3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】臺風(fēng)是一種自然災(zāi)害,它以臺風(fēng)中心為圓心在周圍上千米的范圍內(nèi)形成極端氣候,有極強(qiáng)的破壞力。如圖,有一臺風(fēng)中心沿東西方向AB由點A行駛向點B,已知點 C為一海港,且點 C與直線 AB上兩點A,B的距離分別為300km和400km,又 AB=500km,以臺風(fēng)中心為圓心周圍250km以內(nèi)為受影響區(qū)域。

(1)海港C受臺風(fēng)影響嗎?為什么?

(2)若臺風(fēng)的速度為20km/h,臺風(fēng)影響該海港持續(xù)的時間有多長?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,菱形ABCD的邊長為2,,點EBC邊的中點,點P為對角線AC上一動點,則PB+PE的最小值為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】完成下面的推理.

如圖,BE平分ABD,DE平分BDC,且α+β=90°,試說明:ABCD.

完成推理過程:

BE平分∠ABD(已知),

∴∠ABD2α(__________)

DE平分∠BDC(已知),

∴∠BDC2β (__________)

∴∠ABD+∠BDC2α2β2(α+∠β)( __________)

∵∠α+∠β90°(已知),

∴∠ABD+∠BDC180°(__________)

ABCD(____________________)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】ABC與△DEF是兩個全等的等腰直角三角形,∠BAC=D=90°AB=AC=.現(xiàn)將△DEF與△ABC按如圖所示的方式疊放在一起,使△ABC保持不動,△DEF運(yùn)動,且滿足點E在邊BC上運(yùn)動(不與BC重合),邊DE始終經(jīng)過點A,EFAC交于點M.在△DEF運(yùn)動過程中,若△AEM能構(gòu)成等腰三角形,則BE的長為______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,在矩形ABCD中,AB6,BC8,E為直線BC上一點.

1)如圖1,當(dāng)E在線段BC上,且DEAD時,求BE的長;

2)如圖2,點EBC延長長線上一點,若BDBE,連接DE,MED的中點,連接AMCM,求證:AMCM

3)如圖3,在(2)條件下,P,QAD邊上的兩個動點,且PQ5,連接PBMQ、BM,求四邊形PBMQ的周長的最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為傳播奧運(yùn)知識,小剛就本班學(xué)生對奧運(yùn)知識的了解程度進(jìn)行了一次調(diào)查統(tǒng)計:A:熟悉,B:了解較多,C:一般了解.圖1和圖2是他采集數(shù)據(jù)后,繪制的兩幅不完整的統(tǒng)計圖,請你根據(jù)圖中提供的信息解答以下問題:

(1)在條形圖中,將表示“一般了解”的部分補(bǔ)充完整;

(2)在扇形統(tǒng)計圖中,計算出“了解較多”部分所對應(yīng)的圓心角的度數(shù)為______;

(3)如果全年級共1000名同學(xué),請你估算全年級對奧運(yùn)知識“了解較多”的學(xué)生人數(shù).

查看答案和解析>>

同步練習(xí)冊答案