【題目】我市某鄉(xiāng)鎮(zhèn)實施產(chǎn)業(yè)精準扶貧,幫助貧困戶承包了若干畝土地種植新品草莓,已知該草莓的成本為每千克10元,草莓成熟后投入市場銷售,經(jīng)市場調(diào)查發(fā)現(xiàn),草莓銷售不會虧本,且每天的銷售量y(千克)與銷售單價x(元/千克)之間函數(shù)關(guān)系如圖所示.
(1)求y與x的函數(shù)關(guān)系式,并寫出x的取值范圍.
(2)當該品種草莓的定價為多少時,每天銷售獲得利潤最大?最大利潤是多少?
(3)某村今年草莓采摘期限30天,預(yù)計產(chǎn)量6000千克,則按照(2)中的方式進行銷售,能否銷售完這批草莓?請說明理由.
【答案】(1)y=-25x+700(10≤x≤28);(2)該品種草莓定價為19元/千克時,每天銷售獲得的利潤最大,為2025元;(3)能銷售完這批草莓,理由見解析.
【解析】
(1)利用待定系數(shù)法求解可得結(jié)論;
(2)根據(jù)“總利潤=單個利潤×銷售量”列出函數(shù)解析式,并配方成頂點式即可得出最大值;
(3)求出在(2)中情況下,即x=19時每天的銷售量,據(jù)此求得30天的總銷售量,比較即可得出答案.
(1)設(shè)y與x的函數(shù)關(guān)系式為y=kx+b(k≠0),把A(12,400),B(14,350)分別代入得,解得:,∴y與x的函數(shù)關(guān)系式為y=-25x+700,由題意知:,∴10≤x≤28;
(2)設(shè)每天的銷售利潤為w元,由題意知w=(x-10)(-25x+700)=-25x2+950x-7000 =-25(x-19)2+2025.
∵a=-25<0,∴當x=19時,w取最大值,為2025.
當該品種草莓定價為19元/千克時,每天銷售獲得的利潤最大,為2025元.
(3)能銷售完這批草莓.理由如下:
當x=19時,y=-25×19+700=225,225×30=6750>6000.
∴按照(2)中的方式進行銷售,能銷售完.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,Rt△ABC中,∠ACB=90°,AC=BC,在以AB的中點O為坐標原點,AB所在直線為x軸建立的平面直角坐標系中,將△ABC繞點B順時針旋轉(zhuǎn),使點A旋轉(zhuǎn)至y軸的正半軸上的點A′處,若AO=OB=2,則陰影部分面積為( )
A. πB. π﹣1C. +1D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】嘗試探究
如圖-,在△ABC中,∠C=90°,∠A=30°,點E、F分別是BC、AC邊上的點,且EF//BC.
的值為 ;直線與直線的位置關(guān)系為 ;
類比延伸
如圖,若將圖中的繞點順時針旋轉(zhuǎn),連接,則在旋轉(zhuǎn)的過程中,請判斷的值及直線與直線的位置關(guān)系,并說明理由;
拓展運用
若,在旋轉(zhuǎn)過程中,當三點在同一直線上時,請直接寫出此時線段的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB = 90°,BC = 3,AC = 4,點D為邊AB上一點.將△BCD沿直線CD翻折,點B落在點E處,聯(lián)結(jié)AE.如果AE // CD,那么BE =________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在菱形ABCD中,∠DAB=45°,AB=4,點P為線段AB上一動點,過點P作PE⊥AB交直線AD于點E,將∠A沿PE折疊,點A落在F處,連接DF,CF,當ΔCDF為直角三角形時,線段AP的長為__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正三角形ABC的邊長是2,分別以點B,C為圓心,以r為半徑作兩條弧,設(shè)兩弧與邊BC圍成的陰影部分面積為S,當≤r<2時,S的取值范圍是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標系中,直線AB與x軸,y軸分別交于A(12,0),B(0,16),點C從B點出發(fā)向y軸負方向以每秒2個單位的速度運動,過點C作CE⊥AB于點E,點D為x軸上一動點,連結(jié)CD,DE,以CD,DE為邊作□CDEF.設(shè)運動時間為t秒.
(1)求點C運動了多少秒.時,點E恰好是AB的中點?
(2)當t=4時,若□CDEF的頂點F恰好落在y軸上,請求出此時點D的坐標;
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】2018年10月23日,港珠澳大橋正式開通,成為橫亙在伶仃洋上的一道靚麗的風景.大橋主體工程隧道的東、西兩端各設(shè)置了一個海中人工島,來銜接橋梁和海底隧道,西人工島上的A點和東人工島上的B點間的距離約為5.6千米,點C是與西人工島相連的大橋上的一點,A,B,C在一條直線上.如圖,一艘觀光船沿與大橋段垂直的方向航行,到達P點時觀測兩個人工島,分別測得與觀光船航向的夾角∠DPA=18°,∠DPB=53°,求此時觀光船到大橋AC段的距離的長.
參考數(shù)據(jù):°,°,°,°,°,°.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】茗陽閣位于河南省信陽市獅河區(qū)茶韻路一號,建成于2007年4月29日.是一棟由多種中國建筑元素,由雕欄飛檐、勾心斗角、斗拱圖騰等多種形式的中國古代建筑元素匯聚而成,具有濃郁地方古建筑特色的塔式閣樓.茗陽閣是信陽新建的城市文化與形象的代表建筑之一,同時茗陽閣旁的風景也是優(yōu)美至極.某數(shù)學(xué)課外興趣小組為了測量建在山丘上的茗陽閣的高度,在山腳下的廣場上處測得建筑物點(即山頂)的仰角為20°,沿水平方向前進20米到達點,測得建筑物頂部點的仰角為45°,已知山丘高37.69米.求塔的高度.(結(jié)果精確到1米,參考數(shù)據(jù):)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com