如圖,有一塊直角三角形紙片,兩直角邊AC=6cm,BC=8cm,AD平分∠BAC,DE⊥AB,垂足是點E,求CD的長.
分析:先利用勾股定理可計算出AB=10,有AD平分∠BAC,DE⊥AB,根據(jù)角平分線的性質(zhì)得到DC=DE,然后根據(jù)三角形全等的判定方法得到△ADC≌△ADE,則AE=AC=6,也是BE=AB-AE=10-6=4,設(shè)CD=x,則DE=x,DB=8-x,在Rt△BDE中,利用勾股定理得到BD2=DE2+BE2,即(8-x)2=x2+42,再解方程即可得到CD的長.
解答:解:在Rt△ABC中,AC=6cm,BC=8cm,
AB=
AC2+BC2
=10,
∵AD平分∠BAC,DE⊥AB,
∴DC=DE,
在Rt△ADC和Rt△ADE中
AD=AD
DC=DE
∴Rt△ADC≌Rt△ADE,
∴AE=AC=6,
∴BE=AB-AE=10-6=4,
設(shè)CD=x,則DE=x,DB=8-x,
在Rt△BDE中,BD2=DE2+BE2,即(8-x)2=x2+42,
解得x=3,
所以CD的長為3cm.
點評:本題考查了角平分線的性質(zhì):角平分線上的點到角的兩邊的距離相等.也考查了勾股定理以及三角形全等的判定與性質(zhì).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

9、如圖,有一塊直角三角形紙片,兩直角邊AC=6cm,BC=8cm.現(xiàn)將直角邊AC沿直線AD折疊,使它落在斜邊AB上,且與AE重合,則CD等于( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

3、如圖,有一塊直角三角形紙片,兩直角邊AC=6cm,BC=8cm,現(xiàn)將直角邊AC沿著直線AD折疊,使它落在斜邊AB上,且與AE重合,則CD的長為
3
cm.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

5、如圖,有一塊直角三角形紙片,現(xiàn)將直角邊AC沿直線AD折疊,使它落在斜邊AB上,則點C與斜邊AB的中點E正好重合,且BD=8cm,則AD的長為( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,有一塊直角三角形紙片,∠C=90°,AC=4cm,BC=3cm,將斜邊AB翻折,使點B落在直角邊AC的延長線上的點E處,折痕為AD,則CD的長為
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,有一塊直角三角形紙片,兩直角邊AC=6cm,BC=8cm,現(xiàn)將直角三角形紙片沿直線AD折疊,使點C恰好落在斜邊AB上點E處.
(1)求AB的長;
(2)直接寫出AE、BE的長及∠BED的度數(shù);
(3)求CD的長.

查看答案和解析>>

同步練習(xí)冊答案