【題目】如圖,為加快5G網(wǎng)絡(luò)建設(shè),某通信公司在一個(gè)坡度i12.4的山坡AB上建了一座信號(hào)塔CD,信號(hào)塔底端C到山腳A的距離AC13米,在距山腳A水平距離18米的E處,有一高度為10米的建筑物EF,在建筑物頂端F處測(cè)得信號(hào)塔頂端D的仰角為37°(信號(hào)塔及山坡的剖面和建筑物的剖面在同一平面上),則信號(hào)塔CD的高度約是( 。▍⒖紨(shù)據(jù):sin37°≈0.60,cos37°≈0.80tan37°≈0.75

A.22.5B.27.5C.32.5D.45.0

【答案】B

【解析】

過(guò)點(diǎn)FFHDC于點(diǎn)H,延長(zhǎng)DCEA于點(diǎn)G,可得四邊形EFHG是矩形,根據(jù)AB的坡度i12.4AC13,可得CG5AG12CHGHCG1055,再根據(jù)銳角三角函數(shù)即可求出信號(hào)塔CD的高度.

解:如圖,過(guò)點(diǎn)FFHDC于點(diǎn)H,

延長(zhǎng)DCEA于點(diǎn)G,

則四邊形EFHG是矩形,

FHGE,CGEF,

AB的坡度i12.4AC13,

CG5,AG12

CHGHCG1055,

GEAG+AE12+1830,

∴在RtDCF中,∠DFC37°,FHGE30,

DHFHtan37°≈30×0.7522.5

CDDH+CH22.5+527.5(米).

所以信號(hào)塔CD的高度約是27.5米.

故選:B

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖

1)方法體驗(yàn):

如圖1,點(diǎn)P在矩形ABCD的對(duì)角線AC上,且不與點(diǎn)AC重合,過(guò)點(diǎn)P分別作邊ABAD的平行線,交兩組對(duì)邊于點(diǎn)E,FG,H,容易證明四邊形PEDH和四邊形PFBG是面積相等的矩形,分別連結(jié)EG,FH

①根據(jù)矩形PEDH和矩形PFBG面積相等的關(guān)系,那么PE·PH=

②求證:EGFH

2)方法遷移:

如圖2,已知直線 分別與x軸,y軸交于DC兩點(diǎn),與雙曲線 交于A,B兩點(diǎn). 求證:AC=BD

3)知識(shí)應(yīng)用:

如圖3,反比例函數(shù) x0)的圖象與矩形ABCO的邊BC交于點(diǎn)D,與邊AB交于點(diǎn)E, 直線DEx軸,y軸分別交于點(diǎn)FG .若矩形ABCO的面積為10,ODGODF的面積比為35,則k=________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知拋物線x軸于A、B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左側(cè)),與y軸交于點(diǎn)C

1)求點(diǎn)AB、C的坐標(biāo);

2)若點(diǎn)M為拋物線的頂點(diǎn),連接BCCM、BM,求△BCM的面積;

3)連接AC,在x軸上是否存在點(diǎn)P使△ACP為等腰三角形,若存在,請(qǐng)求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四邊形ABCD是平行四邊形,//,且分別交對(duì)角線AC于點(diǎn)EF,連接BE,DF

1)求證:AE=CF

2)若BE=DE,求證:四邊形EBFD為菱形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】黔東南州某超市購(gòu)進(jìn)甲、乙兩種商品,已知購(gòu)進(jìn)3件甲商品和2件乙商品,需60元;購(gòu)進(jìn)2件甲商品和3件乙商品,需65元.

1)甲、乙兩種商品的進(jìn)貨單價(jià)分別是多少?

2)設(shè)甲商品的銷售單價(jià)為x(單位:元/件),在銷售過(guò)程中發(fā)現(xiàn):當(dāng)11x19時(shí),甲商品的日銷售量y(單位:件)與銷售單價(jià)x之間存在一次函數(shù)關(guān)系,x、y之間的部分?jǐn)?shù)值對(duì)應(yīng)關(guān)系如表:

銷售單價(jià)x(元/件)

11

19

日銷售量y(件)

18

2

請(qǐng)寫出當(dāng)11x19時(shí),yx之間的函數(shù)關(guān)系式.

3)在(2)的條件下,設(shè)甲商品的日銷售利潤(rùn)為w元,當(dāng)甲商品的銷售單價(jià)x(元/件)定為多少時(shí),日銷售利潤(rùn)最大?最大利潤(rùn)是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平行四邊形ABCD中,AB2,∠ABC45°,點(diǎn)E為射線AD上一動(dòng)點(diǎn),連接BE,將BE繞點(diǎn)B逆時(shí)針旋轉(zhuǎn)60°得到BF,連接AF,則AF的最小值是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,在正方形中,對(duì)角線相交于點(diǎn),點(diǎn)為線段上一點(diǎn),連接,將點(diǎn)順時(shí)針旋轉(zhuǎn)得到,連接于點(diǎn).

1)若,求的面積;

2)如圖2,線段的延長(zhǎng)線交于點(diǎn),過(guò)點(diǎn)于點(diǎn),求證:;

3)如圖3,點(diǎn)為射線上一點(diǎn),線段的延長(zhǎng)線交直線于點(diǎn),交直線于點(diǎn),過(guò)點(diǎn)垂直直線于點(diǎn),請(qǐng)直接寫出線段的數(shù)量關(guān)系.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在中,AB的直徑,C上一點(diǎn),P的中點(diǎn),過(guò)點(diǎn)PAC的垂線,交AC的延長(zhǎng)線于點(diǎn)D

1)求證:DP的切線;

2)若AC=5,,AP的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】有一種升降熨燙臺(tái)如圖1所示,其原理是通過(guò)改變兩根支撐桿夾角的度數(shù)來(lái)調(diào)整熨燙臺(tái)的高度.圖2是這種升降熨燙臺(tái)的平面示意圖.ABCD是兩根相同長(zhǎng)度的活動(dòng)支撐桿,點(diǎn)O是它們的連接點(diǎn),OA=OChcm)表示熨燙臺(tái)的高度.

1)如圖21.若AB=CD=110cm,∠AOC=120°,求h的值;

2)愛(ài)動(dòng)腦筋的小明發(fā)現(xiàn),當(dāng)家里這種升降熨燙臺(tái)的高度為120cm時(shí),兩根支撐桿的夾角∠AOC74°(如圖22).求該熨燙臺(tái)支撐桿AB的長(zhǎng)度(結(jié)果精確到lcm).

(參考數(shù)據(jù):sin37°≈0.6cos37°≈0.8,sin53°≈0.8cos53°≈0.6.)

查看答案和解析>>

同步練習(xí)冊(cè)答案