【題目】如圖 ,ABC 的外角平分線 CP 和內(nèi)角平分線 BP 相交于點(diǎn) P,若∠BPC=25°,則∠CAP=__________.

【答案】65°

【解析】

延長BA,作PNBD于點(diǎn)N,PFBA于點(diǎn)F,PMAC于點(diǎn)M,設(shè)∠PCD=x°,根據(jù)外角與內(nèi)角性質(zhì)得出∠BAC的度數(shù),再利用角平分線的性質(zhì)以及直角三角形全等的判定,得出∠CAP=FAP,即可得出答案.

延長BA,作PNBD于點(diǎn)NPFBA于點(diǎn)F,PMAC于點(diǎn)M

設(shè)∠PCD=x°,

CP平分∠ACD

∴∠ACP=PCD=x°,PM=PN

BP平分∠ABC,

∴∠ABP=PBCPF=PN,

PF=PM,

∵∠BPC=25°,

∴∠ABP=PBC=x-25)°,

∴∠BAC=ACD-ABC=2x°-x°-25°)-x°-25°)=50°,

∴∠CAF=130°,

RtPFARtPMA中,

RtPFARtPMAHL),

∴∠FAP=PAC=65°.

故答案為65°.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,拋物線y=ax2+2x+cx軸交于A(﹣1,0)B(3,0)兩點(diǎn),與y軸交于點(diǎn)C,點(diǎn)D是該拋物線的頂點(diǎn).

(1)求拋物線的解析式和直線AC的解析式;

(2)請(qǐng)?jiān)?/span>y軸上找一點(diǎn)M,使BDM的周長最小,求出點(diǎn)M的坐標(biāo);

(3)試探究:在拋物線上是否存在點(diǎn)P,使以點(diǎn)A,P,C為頂點(diǎn),AC為直角邊的三角形是直角三角形?若存在,請(qǐng)求出符合條件的點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,CABC,垂足為C,AC2cm,BC6cm,射線BMBQ,垂足為B,動(dòng)點(diǎn)PC點(diǎn)出發(fā)以1cm/s的速度沿射線CQ運(yùn)動(dòng),點(diǎn)N為射線BM上一動(dòng)點(diǎn),滿足PNAB,隨著P點(diǎn)運(yùn)動(dòng)而運(yùn)動(dòng),當(dāng)點(diǎn)P運(yùn)動(dòng)_____秒時(shí),△BCA與點(diǎn)P、N、B為頂點(diǎn)的三角形全等.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB是⊙O的直徑,OD垂直于弦AC于點(diǎn)E,且交⊙O于點(diǎn)D,F(xiàn)是BA延長線上一點(diǎn),若∠CDB=∠BFD.

(1)求證:FD是⊙O的一條切線;

(2)若AB=10,AC=8,求DF的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,C為線段AB上一點(diǎn),點(diǎn)DBC的中點(diǎn),且AB18cm,AC4CD

1)圖中共有   條線段;

2)求AC的長;

3)若點(diǎn)E在直線AB上,且EA2cm,求BE的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】隨著科技與經(jīng)濟(jì)的發(fā)展,中國廉價(jià)勞動(dòng)力的優(yōu)勢(shì)開始逐漸消失,而作為新興領(lǐng)域的機(jī)器人產(chǎn)業(yè)則迅速崛起,機(jī)器人自動(dòng)化線的市場(chǎng)也越來越大,并且逐漸成為自動(dòng)化生產(chǎn)線的主要方式,某化工廠要在規(guī)定時(shí)間內(nèi)搬運(yùn)1200千元化工原料.現(xiàn)有A,B兩種機(jī)器人可供選擇,已知A型機(jī)器人比B型機(jī)器人每小時(shí)多搬運(yùn)30千克,A型機(jī)器人搬運(yùn)900千克所用的時(shí)間與B型機(jī)器人搬運(yùn)600千克所用的時(shí)間相等.

(1)兩種機(jī)器人每小時(shí)分別搬運(yùn)多少化工原料?

(2)該工廠原計(jì)劃同時(shí)使用這兩種機(jī)器人搬運(yùn),工作一段時(shí)間后,A型機(jī)器人又有了新的搬運(yùn)任務(wù),但必須保證這批化工原料在11小時(shí)內(nèi)全部搬運(yùn)完畢.求:A型機(jī)器人至少工作幾個(gè)小時(shí),才能保證這批化工原料在規(guī)定的時(shí)間內(nèi)完成.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知∠1=2,∠A=D,說明∠F與∠C相等的理由.

解:∵∠1=2( 已知 ),∠2=4 ( ),

∴∠1=4( 等量代換 ),

FBEC( ),

∴∠3=C( 兩直線平行,同位角相等 )

∵∠A=D( )

EDAC( ),

∴∠F=3 ( ),

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形OABC是平行四邊形,點(diǎn)C在x軸上,反比例函數(shù)y=(x>0)的圖象經(jīng)過點(diǎn)A(5,12),且與邊BC交于點(diǎn)D.若AB=BD,則點(diǎn)D的坐標(biāo)為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知∠DAE+CBF180°,CE平分∠BCD,∠BCD2E

1)求證:ADBC;

2CDEF平行嗎?寫出證明過程;

3)若DF平分∠ADC,求證:CEDF

查看答案和解析>>

同步練習(xí)冊(cè)答案