【題目】隨著科技與經(jīng)濟(jì)的發(fā)展,中國(guó)廉價(jià)勞動(dòng)力的優(yōu)勢(shì)開始逐漸消失,而作為新興領(lǐng)域的機(jī)器人產(chǎn)業(yè)則迅速崛起,機(jī)器人自動(dòng)化線的市場(chǎng)也越來(lái)越大,并且逐漸成為自動(dòng)化生產(chǎn)線的主要方式,某化工廠要在規(guī)定時(shí)間內(nèi)搬運(yùn)1200千元化工原料.現(xiàn)有A,B兩種機(jī)器人可供選擇,已知A型機(jī)器人比B型機(jī)器人每小時(shí)多搬運(yùn)30千克,A型機(jī)器人搬運(yùn)900千克所用的時(shí)間與B型機(jī)器人搬運(yùn)600千克所用的時(shí)間相等.

(1)兩種機(jī)器人每小時(shí)分別搬運(yùn)多少化工原料?

(2)該工廠原計(jì)劃同時(shí)使用這兩種機(jī)器人搬運(yùn),工作一段時(shí)間后,A型機(jī)器人又有了新的搬運(yùn)任務(wù),但必須保證這批化工原料在11小時(shí)內(nèi)全部搬運(yùn)完畢.求:A型機(jī)器人至少工作幾個(gè)小時(shí),才能保證這批化工原料在規(guī)定的時(shí)間內(nèi)完成.

【答案】(1)A型機(jī)器人每小時(shí)搬運(yùn)90千克化工原料,B型機(jī)器人每小時(shí)搬運(yùn)90千克化工原料;(2)A型機(jī)器人至少工作6小時(shí),才能保證這批化工原料在規(guī)定的時(shí)間內(nèi)完成.

【解析】(1)設(shè)B型機(jī)器人每小時(shí)搬運(yùn)x千克化工原料,則A型機(jī)器人每小時(shí)搬運(yùn)(x+30)千克化工原料,根據(jù)A型機(jī)器人搬運(yùn)900千克所用的時(shí)間與B型機(jī)器人搬運(yùn)600千克所用的時(shí)間相等建立方程求出其解就可以得出結(jié)論.

(2)設(shè)A型機(jī)器人工作t小時(shí),根據(jù)這批化工原料在11小時(shí)內(nèi)全部搬運(yùn)完畢列出不等式并解答.

1)設(shè)B型機(jī)器人每小時(shí)搬運(yùn)x千克化工原料,則A型機(jī)器人每小時(shí)搬運(yùn)(x+30)千克化工原料,

根據(jù)題意,得

解得x=60.

經(jīng)檢驗(yàn),x=60是所列方程的解.

當(dāng)x=60時(shí),x+60=90.

答:A型機(jī)器人每小時(shí)搬運(yùn)90千克化工原料,B型機(jī)器人每小時(shí)搬運(yùn)90千克化工原料;

(2)設(shè)A型機(jī)器人工作t小時(shí),

根據(jù)題意,得1200-90t≤60×11,

解得t≥6.

答:A型機(jī)器人至少工作6小時(shí),才能保證這批化工原料在規(guī)定的時(shí)間內(nèi)完成.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,動(dòng)點(diǎn)A從原點(diǎn)出發(fā)向數(shù)軸負(fù)方向運(yùn)動(dòng),同時(shí)動(dòng)點(diǎn)B也從原點(diǎn)出發(fā)向數(shù)軸正方向運(yùn)動(dòng),2秒后,兩點(diǎn)相距16個(gè)單位長(zhǎng)度,已知?jiǎng)狱c(diǎn)A、B的速度比為1:3(速度單位:1個(gè)單位長(zhǎng)度秒).

(1)求兩個(gè)動(dòng)點(diǎn)運(yùn)動(dòng)的速度;

(2)在數(shù)軸上標(biāo)出A、B兩點(diǎn)從原點(diǎn)出發(fā)運(yùn)動(dòng)2秒時(shí)的位置;

(3)若表示數(shù)0的點(diǎn)記為O,A、B兩點(diǎn)分別從(2)中標(biāo)出的位置同時(shí)向數(shù)軸負(fù)方向運(yùn)動(dòng),再經(jīng)過(guò)多長(zhǎng)時(shí)間,滿足OB=2OA?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,PA=PB,∠PAM+PBN=180°,求證:OP平分∠AOB

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如果三角形的一個(gè)外角等于和它相鄰的內(nèi)角的4倍,等于與它不相鄰的一個(gè)內(nèi)角的2倍,則此三角形各內(nèi)角的度數(shù)是_____________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖 ,ABC 的外角平分線 CP 和內(nèi)角平分線 BP 相交于點(diǎn) P,若∠BPC=25°,則∠CAP=__________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知,△ABC在平面直角坐標(biāo)系中的位置如圖所示(圖中每個(gè)小方格邊長(zhǎng)均為1個(gè)單位長(zhǎng)度)

(1)求△ABC的面積.

(2)ABC中任意一點(diǎn)P(x0,y0)經(jīng)平移后對(duì)應(yīng)點(diǎn)為P1(x0+3y04),將△ABC作同樣的平移得到△A1B1C1,寫出A1、B1、C1的坐標(biāo).A1   B1   ,C1   

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知如圖,在 ABC 中,BAC 90° ,分別過(guò)頂點(diǎn) B、C A 點(diǎn)的直線的垂線垂足分別為 DE,試探究線段 BD、CE、DE 之間的關(guān)系.

(1)當(dāng)直線 DE 繞點(diǎn) A 旋轉(zhuǎn)至如圖 1 的位置,直接寫出 BD、CEDE 之間的數(shù)量 ;

(2)當(dāng)直線 DE 繞點(diǎn) A 旋轉(zhuǎn)至如圖 2 的位置,直接寫出 BD、CE、DE 之間的數(shù)量

(3)當(dāng)直線 DE 繞點(diǎn) A 旋轉(zhuǎn)至如圖 3 的位置,寫出 BD、CE、DE 之間的數(shù)量,并證明 你的結(jié)論;

(4)如圖 4,如果將 ABC 放在直角坐標(biāo)系中,若點(diǎn) A 的坐標(biāo)為(-1,1), OB-OC .請(qǐng)寫出必要的解答步驟.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,AB是⊙O的直徑,E為弦AC的延長(zhǎng)線上一點(diǎn),DE與⊙O相切于點(diǎn)D,且DEAC,連結(jié)OD,若AB=10,AC=6,求DE的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知點(diǎn)D,E,F分別是△ABC的邊AB,AC,BC上的點(diǎn),DEBCDFAC

1)如圖1,點(diǎn)G是線段FD延長(zhǎng)線上一點(diǎn),連接EG,∠CEG的平分線EMAB于點(diǎn)M,交FD于點(diǎn)N.則∠A,∠AME,∠CEG之間存在怎樣的數(shù)量關(guān)系?請(qǐng)寫出證明過(guò)程;

2)如圖2,在(1)的條件下,若EG平分∠AED,∠AME35°,且∠EDF﹣∠A30°,求∠C的度數(shù).

查看答案和解析>>

同步練習(xí)冊(cè)答案