如圖,拋物線y=﹣x2+3x+4與x軸交于A、B兩點(diǎn),與y軸交于C點(diǎn),點(diǎn)D在拋物線上且橫坐標(biāo)為3.
(1)求tan∠DBC的值;
(2)點(diǎn)P為拋物線上一點(diǎn),且∠DBP=45°,求點(diǎn)P的坐標(biāo).
(1)tan∠DBC=;
(2)P(﹣,).
解析試題分析:(1)連接CD,過點(diǎn)D作DE⊥BC于點(diǎn)E.利用拋物線解析式可以求得點(diǎn)A、B、C、D的坐標(biāo),則可得CD//AB,OB=OC,所以∠BCO=∠BCD=∠ABC=45°.由直角三角形的性質(zhì)、勾股定理和圖中相關(guān)線段間的關(guān)系可得BC=4,BE=BC﹣DE=.由此可知tan∠DBC=;
(2)過點(diǎn)P作PF⊥x軸于點(diǎn)F.由∠DBP=45°及∠ABC=45°可得∠PBF=∠DBC,利用(1)中的結(jié)果得到:tan∠PBF=.設(shè)P(x,﹣x2+3x+4),則利用銳角三角函數(shù)定義推知=,通過解方程求得點(diǎn)P的坐標(biāo)為(﹣,).
試題解析:
(1)令y=0,則﹣x2+3x+4=﹣(x+1)(x﹣4)=0,
解得 x1=﹣1,x2=4.
∴A(﹣1,0),B(4,0).
當(dāng)x=3時(shí),y=﹣32+3×3+4=4,
∴D(3,4).
如圖,連接CD,過點(diǎn)D作DE⊥BC于點(diǎn)E.
∵C(0,4),
∴CD//AB,
∴∠BCD=∠ABC=45°.
在直角△OBC中,∵OC=OB=4,
∴BC=4.
在直角△CDE中,CD=3.
∴CE=ED=,
∴BE=BC﹣DE=.
∴tan∠DBC=;
(2)過點(diǎn)P作PF⊥x軸于點(diǎn)F.
∵∠CBF=∠DBP=45°,
∴∠PBF=∠DBC,
∴tan∠PBF=.
設(shè)P(x,﹣x2+3x+4),則=,
解得 x1=﹣,x2=4(舍去),
∴P(﹣,).
考點(diǎn):1、二次函數(shù);2、勾股定理;3、三角函數(shù)
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:解答題
用長(zhǎng)為32米的籬笆圍一個(gè)矩形養(yǎng)雞場(chǎng),設(shè)圍成的矩形一邊長(zhǎng)為x米,面積為y平方米.
(1)求y關(guān)于x的函數(shù)關(guān)系式;
(2)當(dāng)x為何值時(shí),圍成的養(yǎng)雞場(chǎng)面積為60平方米?
(3)能否圍成面積為70平方米的養(yǎng)雞場(chǎng)?如果能,請(qǐng)求出其邊長(zhǎng);如果不能,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
如圖,拋物線:y=ax2+bx+4與x軸交于點(diǎn)A(-2,0)和B(4,0)、與y軸交于點(diǎn)C.
(1)求拋物線的解析式;
(2)T是拋物線對(duì)稱軸上的一點(diǎn),且△ACT是以AC為底的等腰三角形,求點(diǎn)T的坐標(biāo);
(3)點(diǎn)M、Q分別從點(diǎn)A、B以每秒1個(gè)單位長(zhǎng)度的速度沿x軸同時(shí)出發(fā)相向而行.當(dāng)點(diǎn)M原點(diǎn)時(shí),點(diǎn)Q立刻掉頭并以每秒個(gè)單位長(zhǎng)度的速度向點(diǎn)B方向移動(dòng),當(dāng)點(diǎn)M到達(dá)拋物線的對(duì)稱軸時(shí),兩點(diǎn)停止運(yùn)動(dòng).過點(diǎn)M的直線l⊥軸,交AC或BC于點(diǎn)P.求點(diǎn)M的運(yùn)動(dòng)時(shí)間t(秒)與△APQ的面積S的函數(shù)關(guān)系式,并求出S的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
如圖①,已知等腰梯形ABCD的周長(zhǎng)為48,面積為S,AB∥CD,∠ADC=60°,設(shè)AB=3x.
(1)用x表示AD和CD;
(2)用x表示S,并求S的最大值;
(3)如圖②,當(dāng)S取最大值時(shí),等腰梯形ABCD的四個(gè)頂點(diǎn)都在⊙O上,點(diǎn)E和點(diǎn)F分別是AB和CD的中點(diǎn),求⊙O的半徑R的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
如圖1,邊長(zhǎng)為4的正方形ABCD中,點(diǎn)E在AB邊上(不與點(diǎn)A,B重合),點(diǎn)F在BC邊上(不與點(diǎn)B,C重合).
第一次操作:將線段EF繞點(diǎn)F順時(shí)針旋轉(zhuǎn),當(dāng)點(diǎn)E落在正方形上時(shí),記為點(diǎn)G;
第二次操作:將線段FG繞點(diǎn)G順時(shí)針旋轉(zhuǎn),當(dāng)點(diǎn)F落在正方形上時(shí),記為點(diǎn)H;
依次操作下去…
(1)圖2中的△EFD是經(jīng)過兩次操作后得到的,其形狀為 ,求此時(shí)線段EF的長(zhǎng);
(2)若經(jīng)過三次操作可得到四邊形EFGH.
①請(qǐng)判斷四邊形EFGH的形狀為 ,此時(shí)AE與BF的數(shù)量關(guān)系是 ;
②以①中的結(jié)論為前提,設(shè)AE的長(zhǎng)為x,四邊形EFGH的面積為y,求y與x的函數(shù)關(guān)系式及面積y的取值范圍;
(3)若經(jīng)過多次操作可得到首尾順次相接的多邊形,其最大邊數(shù)是多少?它可能是正多邊形嗎?如果是,請(qǐng)直接寫出其邊長(zhǎng);如果不是,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
在平面直角坐標(biāo)系中,拋物線經(jīng)過點(diǎn)(0,),(3,4).
(1)求拋物線的表達(dá)式及對(duì)稱軸;
(2)設(shè)點(diǎn)關(guān)于原點(diǎn)的對(duì)稱點(diǎn)為,點(diǎn)是拋物線對(duì)稱軸上一動(dòng)點(diǎn),記拋物線在,之間的部分為圖象(包含,兩點(diǎn)).若直線與圖象有公共點(diǎn),結(jié)合函數(shù)圖像,求點(diǎn)縱坐標(biāo)的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
如圖,直線與x軸,y軸分別相交于點(diǎn)B,點(diǎn)C,經(jīng)過B、C兩點(diǎn)的拋物線與x軸的另一交點(diǎn)為A,頂點(diǎn)為P,且對(duì)稱軸是直線.
(1)求A點(diǎn)的坐標(biāo)及該拋物線的函數(shù)表達(dá)式;
(2)求出∆PBC的面積;
(3)請(qǐng)問在對(duì)稱軸右側(cè)的拋物線上是否存在點(diǎn)Q,使得以點(diǎn)A、B、C、Q所圍成的四邊形面積是∆PBC的面積的?若存在,請(qǐng)求出點(diǎn)Q的坐標(biāo);若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
如圖,在平面直角坐標(biāo)系中,直線與拋物線交于A、B兩點(diǎn),點(diǎn)A在x軸上,點(diǎn)B的橫坐標(biāo)為-8.
(1)求該拋物線的解析式;
(2)點(diǎn)P是直線AB上方的拋物線上一動(dòng)點(diǎn)(不與點(diǎn)A、B重合),過點(diǎn)P作x軸的垂線,垂足為C,交直線AB于點(diǎn)D,作PE⊥AB于點(diǎn)E.
①設(shè)△PDE的周長(zhǎng)為l,點(diǎn)P的橫坐標(biāo)為x,求l關(guān)于x的函數(shù)關(guān)系式,并求出l的最大值;
②連接PA,以PA為邊作圖示一側(cè)的正方形APFG.隨著點(diǎn)P的運(yùn)動(dòng),正方形的大小、位置也隨之改變.當(dāng)頂點(diǎn)F或G恰好落在y軸上時(shí),直接寫出對(duì)應(yīng)的點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
在直角坐標(biāo)系xOy中,已知點(diǎn)P是反比例函數(shù)y=(x>0)圖象上一個(gè)動(dòng)點(diǎn),以P為圓心的圓始終與y軸相切,設(shè)切點(diǎn)為A.
(1)如圖1,⊙P運(yùn)動(dòng)到與x軸相切,設(shè)切點(diǎn)為K,試判斷四邊形OKPA的形狀,并說明理由.
(2)如圖2,⊙P運(yùn)動(dòng)到與x軸相交,設(shè)交點(diǎn)為B,C.當(dāng)四邊形ABCP是菱形時(shí):
①求出點(diǎn)A,B,C的坐標(biāo).
②在過A,B,C三點(diǎn)的拋物線上是否存在點(diǎn)M,使△MBP的面積是菱形ABCP面積的?若存在,試求出所有滿足條件的M點(diǎn)的坐標(biāo);若不存在,試說明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com