用長(zhǎng)為32米的籬笆圍一個(gè)矩形養(yǎng)雞場(chǎng),設(shè)圍成的矩形一邊長(zhǎng)為x米,面積為y平方米.
(1)求y關(guān)于x的函數(shù)關(guān)系式;
(2)當(dāng)x為何值時(shí),圍成的養(yǎng)雞場(chǎng)面積為60平方米?
(3)能否圍成面積為70平方米的養(yǎng)雞場(chǎng)?如果能,請(qǐng)求出其邊長(zhǎng);如果不能,請(qǐng)說(shuō)明理由.
(1)y關(guān)于x的函數(shù)關(guān)系式是y=﹣x2+16x;
當(dāng)x是6或10時(shí),圍成的養(yǎng)雞場(chǎng)面積為60平方米
不能圍成面積為70平方米的養(yǎng)雞場(chǎng).理由見解析
解析試題分析:(1)根據(jù)矩形的面積公式進(jìn)行列式;
把y的值代入(1)中的函數(shù)關(guān)系,求得相應(yīng)的x值即可.
把y的值代入(1)中的函數(shù)關(guān)系,求得相應(yīng)的x值即可.
試題解析:(1)設(shè)圍成的矩形一邊長(zhǎng)為x米,則矩形的鄰邊長(zhǎng)為:32÷2﹣x.依題意得
y=x(32÷2﹣x)=﹣x2+16x.
答:y關(guān)于x的函數(shù)關(guān)系式是y=﹣x2+16x;
(2)由(1)知,y=﹣x2+16x.
當(dāng)y=60時(shí),﹣x2+16x=60,即(x﹣6)(x﹣10)=0.
解得 x1=6,x2=10,
即當(dāng)x是6或10時(shí),圍成的養(yǎng)雞場(chǎng)面積為60平方米;
(3)不能圍成面積為70平方米的養(yǎng)雞場(chǎng).理由如下:
由(1)知,y=﹣x2+16x.
當(dāng)y=70時(shí),﹣x2+16x=70,即x2﹣16x+70=0
因?yàn)椤?(﹣16)2﹣4×1×70=﹣24<0,
所以 該方程無(wú)解.
即:不能圍成面積為70平方米的養(yǎng)雞場(chǎng).
考點(diǎn):1、一元二次方程的應(yīng)用;2、二次函數(shù)的應(yīng)用;3、根的判別式
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題
如圖,在平面直角坐標(biāo)系中,拋物線y=ax2+3與y軸交于點(diǎn)A,過點(diǎn)A與x軸平行的直線交拋物線于點(diǎn)B、C,則BC的長(zhǎng)值為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
已知直線y=x﹣3與x軸交于點(diǎn)A,與y軸交于點(diǎn)C,拋物線y=﹣x2+mx+n經(jīng)過點(diǎn)A和點(diǎn)C.
(1)求此拋物線的解析式;
(2)在直線CA上方的拋物線上是否存在點(diǎn)D,使得△ACD的面積最大?若存在,求出點(diǎn)D的坐標(biāo);若不存在,說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,在Rt△ABC中,∠ACB=90°,AC=8cm,AB=10cm.點(diǎn)P從點(diǎn)A出發(fā),以5cm/s的速度從點(diǎn)A運(yùn)動(dòng)到終點(diǎn)B;同時(shí),點(diǎn)Q從點(diǎn)C出發(fā),以3cm/s的速度從點(diǎn)C運(yùn)動(dòng)到終點(diǎn)B,連結(jié)PQ;過點(diǎn)P作PD⊥AC交AC于點(diǎn)D,將△APD沿PD翻折得到△A′PD,以A′P和PB為鄰邊作?A′PBE,A′E交射線BC于點(diǎn)F,交射線PQ于點(diǎn)G.設(shè)?A′PBE與四邊形PDCQ重疊部分圖形的面積為Scm2,點(diǎn)P的運(yùn)動(dòng)時(shí)間為ts.
(1)當(dāng)t為何值時(shí),點(diǎn)A′與點(diǎn)C重合;
(2)用含t的代數(shù)式表示QF的長(zhǎng);
(3)求S與t的函數(shù)關(guān)系式;
(4)請(qǐng)直接寫出當(dāng)射線PQ將?A′PBE分成的兩部分圖形的面積之比是1:3時(shí)t的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖1,在平面直角坐標(biāo)系xOy中,點(diǎn)M為拋物線的頂點(diǎn),過點(diǎn)(0,4)作x軸的平行線,交拋物線于點(diǎn)P、Q(點(diǎn)P在Q的左側(cè)),PQ=4.
(1)求拋物線的函數(shù)關(guān)系式,并寫出點(diǎn)P的坐標(biāo);
(2)小麗發(fā)現(xiàn):將拋物線繞著點(diǎn)P旋轉(zhuǎn)180°,所得新拋物線的頂點(diǎn)恰為坐標(biāo)原點(diǎn)O,你認(rèn)為正確嗎?請(qǐng)說(shuō)明理由;
(3)如圖2,已知點(diǎn)A(1,0),以PA為邊作矩形PABC(點(diǎn)P、A、B、C按順時(shí)針的方向排列),.
①寫出C點(diǎn)的坐標(biāo):C( , )(坐標(biāo)用含有t的代數(shù)式表示);
②若點(diǎn)C在題(2)中旋轉(zhuǎn)后的新拋物線上,求t的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,拋物線y=﹣x2+3x+4與x軸交于A、B兩點(diǎn),與y軸交于C點(diǎn),點(diǎn)D在拋物線上且橫坐標(biāo)為3.
(1)求tan∠DBC的值;
(2)點(diǎn)P為拋物線上一點(diǎn),且∠DBP=45°,求點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:計(jì)算題
如圖所示,已知平面直角坐標(biāo)系xOy,拋物線過點(diǎn)A(4,0)、B(1,3)
【小題1】求該拋物線的表達(dá)式,并寫出該拋物線的對(duì)稱軸和頂點(diǎn)坐標(biāo);
【小題2】記該拋物線的對(duì)稱軸為直線l,設(shè)拋物線上的點(diǎn)P(m,n)在第四象限,點(diǎn)P關(guān)于直線l的對(duì)稱點(diǎn)為E,點(diǎn)E關(guān)于y軸的對(duì)稱點(diǎn)為F,若四邊形OAPF的面積為20,求m、n的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com