5、如圖是一個正方體的側(cè)面展開圖,如果將它折疊成一個正方體后相對的面上的數(shù)相等,則圖中x的值為
7
分析:正方體的平面展開圖中,相對面的特點是中間必須間隔一個正方形,據(jù)此作答.
解答:解:正方體的平面展開圖中,相對面的特點是中間必須間隔一個正方形,所以與“x”字相對的字是7,故x=7.
點評:解決此類問題,要充分考慮帶有各種符號的面的特點及位置.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

李老師在與同學(xué)進(jìn)行“螞蟻怎樣爬最近”的課題研究時設(shè)計了以下三個問題,請你根據(jù)下列所給的重要條件分別求出螞蟻需要爬行的最短路程的長.
(1)如圖1,正方體的棱長為5cm一只螞蟻欲從正方體底面上的點A沿著正方體表面爬到點C1處;
(2)如圖2,圓錐的母線長為4cm,底面半徑r=
43
cm,一只螞蟻欲從圓錐的底面上的點A出發(fā),沿圓錐側(cè)面爬行一周回到點A.
(3)如圖3,是一個沒有上蓋的圓柱形食品盒,一只螞蟻在盒外表面的A處,它想吃到盒內(nèi)表面對側(cè)中點B處的食物,已知盒高10cm,底面圓周長為32cm,A距下底面3cm.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

李老師在與同學(xué)進(jìn)行“螞蟻怎樣爬最近”的課題研究時設(shè)計了以下三個問題,請你根據(jù)下列所給的重要條件分別求出螞蟻需要爬行的最短路程的長。

(1)如圖1,正方體的棱長為5cm一只螞蟻欲從正方體底面上的點A沿著正方體表面爬到點C1處;

(2)如圖2,圓錐的母線長為4cm,底面半徑r=cm,一只螞蟻欲從圓錐的底面上的點A出發(fā),沿圓錐側(cè)面爬行一周回到點A.

(3)如圖3,是一個沒有上蓋的圓柱形食品盒,一只螞蟻在盒外表面的A處,它想吃到

盒內(nèi)表面對側(cè)中點B處的食物,已知盒高10cm,底面圓周長為32cm,A距下底面3cm

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2011年湖南省長沙市長鐵一中初一上學(xué)期末數(shù)學(xué)卷 題型:解答題

李老師在與同學(xué)進(jìn)行“螞蟻怎樣爬最近”的課題研究時設(shè)計了以下三個問題,請你根據(jù)下列所給的重要條件分別求出螞蟻需要爬行的最短路程的長。

(1)如圖1,正方體的棱長為5cm一只螞蟻欲從正方體底面上的點A沿著正方體表面爬到點C1處;
(2)如圖2,圓錐的母線長為4cm,底面半徑r=cm,一只螞蟻欲從圓錐的底面上的點A出發(fā),沿圓錐側(cè)面爬行一周回到點A.
(3)如圖3,是一個沒有上蓋的圓柱形食品盒,一只螞蟻在盒外表面的A處,它想吃到
盒內(nèi)表面對側(cè)中點B處的食物,已知盒高10cm,底面圓周長為32cm,A距下底面3cm

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2012-2013學(xué)年江蘇省無錫市九年級12月質(zhì)量監(jiān)測數(shù)學(xué)試卷(解析版) 題型:解答題

李老師在與同學(xué)進(jìn)行“螞蟻怎樣爬最近”的課題研究時設(shè)計了以下三個問題,請你根據(jù)下列所給的重要條件分別求出螞蟻需要爬行的最短路程的長.

(1)如圖1,正方體的棱長為5cm一只螞蟻欲從正方體底面上的點A沿著正方體表面爬到點C1處;

(2)如圖2,圓錐的母線長為4cm,底面半徑r=cm,一只螞蟻欲從圓錐的底面上的點A出發(fā),沿圓錐側(cè)面爬行一周回到點A;

(3)如圖3,是一個沒有上蓋的圓柱形食品盒,一只螞蟻在盒外表面的A處,它想吃到盒內(nèi)表面對側(cè)中點B處的食物,已知盒高10cm,底面圓周長為32cm,A距下底面3cm..

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2011年湖南省長沙市初一上學(xué)期末數(shù)學(xué)卷 題型:解答題

李老師在與同學(xué)進(jìn)行“螞蟻怎樣爬最近”的課題研究時設(shè)計了以下三個問題,請你根據(jù)下列所給的重要條件分別求出螞蟻需要爬行的最短路程的長。

(1)如圖1,正方體的棱長為5cm一只螞蟻欲從正方體底面上的點A沿著正方體表面爬到點C1處;

(2)如圖2,圓錐的母線長為4cm,底面半徑r=cm,一只螞蟻欲從圓錐的底面上的點A出發(fā),沿圓錐側(cè)面爬行一周回到點A.

(3)如圖3,是一個沒有上蓋的圓柱形食品盒,一只螞蟻在盒外表面的A處,它想吃到

盒內(nèi)表面對側(cè)中點B處的食物,已知盒高10cm,底面圓周長為32cm,A距下底面3cm

 

查看答案和解析>>

同步練習(xí)冊答案