精英家教網 > 初中數學 > 題目詳情
若點(3,4)是反比例函數y=
m2+2m+1
x
的圖象上一點,則此函數圖象必經過點( 。
A、(2,6)
B、(-2.6)
C、(4,-3)
D、(3,-4)
分析:根據反比例函數圖象上點的坐標特征,k=12,判斷各選項中的橫縱坐標之積是否等于12.
解答:解:把點(3,4)代入反比例函數y=
m2+2m+1
x
,4=
2m+1+m2
3
,解得m2+2m+1=k=12,故此函數為y=
12
x
,即xy=12,在四個選項中只有A中xy=12.
故選A.
點評:本題考查了反比例函數圖象上點的坐標特征,只要點在函數的圖象上,則一定滿足函數的解析式.反之,只要滿足函數解析式就一定在函數的圖象上.
練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

精英家教網如圖,拋物線y=ax2+bx+c經過點A(1,2)、B(2,1)和C(-2,-1)三點.
(1)求拋物線的解析式;
(2)反比例函數y=
k
x
的圖象的一個分支經過點C,并且另個分支與拋物線在第一象限相交.
①求出k的值;
②反比函數y=
k
x
的圖象是否經過點A和點B,試說明理由;
③若點P(a,b)是反比例函數y=
k
x
在第三象限的圖象上的一個動點,連接AB、PA、PB,請問是否存在這樣的一點P使△PAB的面積為3?如果存在,試求出所有符合條件的點P的坐標;如果不存在,請說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

已知點P是反比列函數y=
kx
(k≠0)的圖象上任一點,過P點分別做x軸,y軸的平行線,若兩平行線與坐標軸圍成矩形的面積為2,則k的值為
 

查看答案和解析>>

科目:初中數學 來源: 題型:解答題

如圖,拋物線y=ax2+bx+c經過點A(1,2)、B(2,1)和C(-2,-1)三點.
(1)求拋物線的解析式;
(2)反比例函數y=數學公式的圖象的一個分支經過點C,并且另個分支與拋物線在第一象限相交.
①求出k的值;
②反比函數y=數學公式的圖象是否經過點A和點B,試說明理由;
③若點P(a,b)是反比例函數y=數學公式在第三象限的圖象上的一個動點,連接AB、PA、PB,請問是否存在這樣的一點P使△PAB的面積為3?如果存在,試求出所有符合條件的點P的坐標;如果不存在,請說明理由.

查看答案和解析>>

科目:初中數學 來源:2010年海南省中考數學模擬試卷(5)(解析版) 題型:解答題

如圖,拋物線y=ax2+bx+c經過點A(1,2)、B(2,1)和C(-2,-1)三點.
(1)求拋物線的解析式;
(2)反比例函數y=的圖象的一個分支經過點C,并且另個分支與拋物線在第一象限相交.
①求出k的值;
②反比函數y=的圖象是否經過點A和點B,試說明理由;
③若點P(a,b)是反比例函數y=在第三象限的圖象上的一個動點,連接AB、PA、PB,請問是否存在這樣的一點P使△PAB的面積為3?如果存在,試求出所有符合條件的點P的坐標;如果不存在,請說明理由.

查看答案和解析>>

科目:初中數學 來源:第5章《反比例函數》好題集(08):5.2 反比例函數的圖象與性質(解析版) 題型:填空題

已知點P是反比列函數y=(k≠0)的圖象上任一點,過P點分別做x軸,y軸的平行線,若兩平行線與坐標軸圍成矩形的面積為2,則k的值為   

查看答案和解析>>

同步練習冊答案