【題目】觀察圖形,解答問題:
(1)按下表已填寫的形式填寫表中的空格:
圖① | 圖② | 圖③ | |
三個角上三個數(shù)的積 | 1×(﹣1)×2=﹣2 | (﹣3)×(﹣4)×(﹣5)=﹣60 | |
三個角上三個數(shù)的和 | 1+(﹣1)+2=2 | (﹣3)+(﹣4)+(﹣5)=﹣12 | |
積與和的商 | ﹣2÷2=﹣1 |
(2)請用你發(fā)現(xiàn)的規(guī)律求出圖④中的數(shù)y和圖⑤中的數(shù)x.
【答案】
(1)解:圖②:(﹣60)÷(﹣12)=5,
圖③:(﹣2)×(﹣5)×17=170,
(﹣2)+(﹣5)+17=10,
170÷10=17.
圖① | 圖② | 圖③ | |
三個角上三個數(shù)的積 | 1×(﹣1)×2=﹣2 | (﹣3)×(﹣4)×(﹣5)=﹣60 | (﹣2)×(﹣5)×17=170 |
三個角上三個數(shù)的和 | 1+(﹣1)+2=2 | (﹣3)+(﹣4)+(﹣5)=﹣12 | (﹣2)+(﹣5)+17=10 |
積與和的商 | ﹣2÷2=﹣1, | (﹣60)÷(﹣12)=5, | 170÷10=17 |
(2)解:圖④:5×(﹣8)×(﹣9)=360,
5+(﹣8)+(﹣9)=﹣12,
y=360÷(﹣12)=﹣30,
圖⑤: =﹣3,
解得x=﹣2;
經(jīng)檢驗x=﹣2是原方程的根,
∴圖⑤中的數(shù)為﹣2
【解析】(1)根據(jù)要求求出三個角上三個數(shù)的積和三個角上三個數(shù)的和,再求積與和的商即可;(2)y=積與和的商,圖⑤中,和=1+3+x,積=13x,再根據(jù)積與和的商=-3可得關(guān)于x的方程,解這個方程即可。
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,沿AE折疊長方形ABCD使點D恰好落在BC邊上的點F處.已知AB=8cm,BC=10cm.
(1)求EC的長;
(2)求DE的長;
(3)求△AFE的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知拋物線經(jīng)過坐標原點O和x軸上另一點E,頂點M的坐標為(2,4);矩形ABCD的頂點A與點O重合,AD、AB分別在x軸、y軸上,且AD=2,AB=3.
(1)求該拋物線所對應(yīng)的函數(shù)關(guān)系式;
(2)將矩形ABCD以每秒1個單位長度的速度從如圖所示的位置沿x軸的正方向勻速平行移動,同時一動點P也以相同的速度從點A出發(fā)向B勻速移動,設(shè)它們運動的時間為t秒(0≤t≤3),直線AB與該拋物線的交點為N(如圖2所示).
①當t=時,判斷點P是否在直線ME上,并說明理由;
②設(shè)以P、N、C、D為頂點的多邊形面積為S,試問S是否存在最大值?若存在,求出這個最大值;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如果∠α和∠β互補,且∠α>∠β,則下列表示角的式子中:①90°﹣∠β;②∠α﹣90°;③ (∠α+∠β);④ (∠α﹣∠β).能表示∠β的余角的是(填寫序號)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小明在計算一個二項式的平方時,得到的正確結(jié)果是m2+10mn+■,但最后一項不慎被污染了,這一項應(yīng)是( )
A. 5n2 B. 10n2 C. 25n2 D. ±25n2
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】“在數(shù)軸上任取一個點,這個點所表示的數(shù)是有理數(shù)”這一事件是________(填“必然事件”、“不可能事件”或“隨機事件”).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com