【題目】關(guān)于x的方程,

(1)a為何值時(shí),方程的一根為0?

(2)a為何值時(shí),兩根互為相反數(shù)?

(3)試證明:無(wú)論a取何值,方程的兩根不可能互為倒數(shù).

【答案】(1)a=1時(shí),方程的一根為0;

(2)當(dāng)a=2時(shí),原方程的兩根互為相反數(shù);

(3)無(wú)論a取何值,方程的兩根不可能互為倒數(shù)

【解析】

試題(1)若方程的一根為0,則兩根的積必為0,根據(jù)此關(guān)系可求出a的值;

(2)根據(jù)相反數(shù)的概念及一元二次方程兩根之和與系數(shù)的關(guān)系解答即可;

(3)根據(jù)倒數(shù)的概念及一元二次方程兩根之積與系數(shù)的關(guān)系證明即可

試題解析:(1)關(guān)于x的方程2x2﹣(a2﹣4)x﹣a+1=0,一根為0,

=0,

﹣a+1=0,解得a=1,

a=1時(shí),方程的一根為0;

(2)關(guān)于x的方程2x2﹣(a2﹣4)x﹣a+1=0,兩根互為相反數(shù),

=0,解得:a=±2;

把a(bǔ)=2代入原方程得,2x2﹣1=0,x=±,

把a(bǔ)=﹣2代入原方程得,2x2+3=0,x2=,無(wú)解.

故當(dāng)a=2時(shí),原方程的兩根互為相反數(shù);

(3)因?yàn)榛榈箶?shù)的兩個(gè)數(shù)積為1,所以x1x2==1,

=1,

解得,a=﹣1,

把a(bǔ)=﹣1代入原方程得,2x2+3x+2=0,

∵△=32﹣4×2×2=﹣7<0,

原方程無(wú)解,

無(wú)論a取何值,方程的兩根不可能互為倒數(shù)

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】[問(wèn)題情境]

已知矩形的面積為一定值1,當(dāng)該矩形的一組鄰邊分別為多少時(shí),它的周長(zhǎng)最?最小值是多少?

[數(shù)學(xué)模型]

設(shè)該矩形的一邊長(zhǎng)為x,周長(zhǎng)為L,則Lx的函數(shù)表達(dá)式為    

[探索研究]

小彬借鑒以前研究函數(shù)的經(jīng)驗(yàn),先探索函數(shù)的圖象性質(zhì).

1)結(jié)合問(wèn)題情境,函數(shù)的自變量x的取值范圍是    ,

如表是yx的幾組對(duì)應(yīng)值.

x

1

2

3

m

y

4

3

2

2

2

3

4

直接寫出m的值;

畫(huà)出該函數(shù)圖象,結(jié)合圖象,得出當(dāng)x=    時(shí),y有最小值,y的最小值為    

[解決問(wèn)題]

2)直接寫出“問(wèn)題情境”中問(wèn)題的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)A(,0),點(diǎn)B(0,1),作第一個(gè)正方形OA1C1B1且點(diǎn)A1OA上,點(diǎn)B1OB上,點(diǎn)C1AB上;作第二個(gè)正方形A1A2C2B2且點(diǎn)A2A1A上,點(diǎn)B2A1C2上,點(diǎn)C2AB,如此下去,則點(diǎn)Cn的縱坐標(biāo)為________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】(問(wèn)題情境)

如圖,在正方形ABCD中,點(diǎn)E是線段BG上的動(dòng)點(diǎn),AEEF,EF交正方形外角∠DCG的平分線CF于點(diǎn)F.

(探究展示)

(1)如圖1,若點(diǎn)EBC的中點(diǎn),證明:∠BAE+EFC=DCF.

(2)如圖2,若點(diǎn)EBC的上的任意一點(diǎn)(B、C除外),∠BAE+EFC=DCF是否仍然成立?若成立,請(qǐng)予以證明;若不成立,請(qǐng)說(shuō)明理由.

(拓展延伸)

(3)如圖3,若點(diǎn)EBC延長(zhǎng)線(C除外)上的任意一點(diǎn),求證:AE=EF.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1中的三種情況所示,對(duì)于平面內(nèi)的點(diǎn)M,點(diǎn)N,點(diǎn)P,如果將線段PM繞點(diǎn)P順時(shí)針旋轉(zhuǎn)90°能得到線段PN,就稱點(diǎn)N是點(diǎn)M關(guān)于點(diǎn)P正矩點(diǎn)

1)在如圖2所示的平面直角坐標(biāo)系中,已知,

①在點(diǎn)P,點(diǎn)Q中,___________是點(diǎn)S關(guān)于原點(diǎn)O正矩點(diǎn);

②在S,PQ,M這四點(diǎn)中選擇合適的三點(diǎn),使得這三點(diǎn)滿足:

點(diǎn)_________是點(diǎn)___________關(guān)于點(diǎn)___________正矩點(diǎn),寫出一種情況即可;

2)在平面直角坐標(biāo)系中,直線x軸交于點(diǎn)A,與y軸交于點(diǎn)B,點(diǎn)A關(guān)于點(diǎn)B正矩點(diǎn)記為點(diǎn)C,坐標(biāo)為

①當(dāng)點(diǎn)Ax軸的正半軸上且OA小于3時(shí),求點(diǎn)C的橫坐標(biāo)的值;

②若點(diǎn)C的縱坐標(biāo)滿足,直接寫出相應(yīng)的k的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,ABD,AEC 都是等邊三角形

1)求證:BEDC .

2)設(shè) BE、DC 交于 M,連 AM,求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,A50),B05.

1)如圖 1,P AB 上一點(diǎn)且,求 P 點(diǎn)坐標(biāo);

2)如圖 2D OA 上一點(diǎn),ACOB 且∠CBO=∠DCB,求∠CBD 的度數(shù);

3)如圖 3,E OA 上一點(diǎn),OFBE F,若∠BEO45°+∠EOF,求的值

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)y=的圖象如圖所示,則以下結(jié)論:①m<0;②在每個(gè)分支上y隨x的增大而增大;③若點(diǎn)A(-1,a),點(diǎn)B(2,b)在圖象上,則a <b;④若點(diǎn)P(x,y)在圖象上,則點(diǎn)P1(-x,y)也在圖象上.其中正確的個(gè)數(shù)為(  )

A. 4 B. 3 C. 2 D. 1

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,A城氣象臺(tái)測(cè)得臺(tái)風(fēng)中心在A城正西方向240kmO處,以每小時(shí)40km的速度向南偏東60°的OB方向移動(dòng),距臺(tái)風(fēng)中心130km的范圍內(nèi)是受臺(tái)風(fēng)影響的區(qū)域.

1A城是否受到這次臺(tái)風(fēng)的影響?為什么?

2)若A城受到臺(tái)風(fēng)的影響,求出受臺(tái)風(fēng)影響的時(shí)間有多長(zhǎng)?

查看答案和解析>>

同步練習(xí)冊(cè)答案