【題目】如圖,在中,于點(diǎn)的角平分線相交于點(diǎn),為邊的中點(diǎn),,則

A.125°B.145°C.175°D.190°

【答案】C

【解析】

根據(jù)直角三角形的斜邊上的中線的性質(zhì),即可得到CDF是等邊三角形,進(jìn)而得到∠ACD=60°,根據(jù)∠BCD和∠BDC的角平分線相交于點(diǎn)E,即可得出∠CED=115°,即可得到∠ACD+CED=60°+115°=175°

如圖:

CDABF為邊AC的中點(diǎn),

DF=AC=CF,

又∵CD=CF,

CD=DF=CF,

∴△CDF是等邊三角形,

∴∠ACD=60°,

∵∠B=50°

∴∠BCD+BDC=130°,

∵∠BCD和∠BDC的角平分線相交于點(diǎn)E,

∴∠DCE+CDE=65°,

∴∠CED=115°,

∴∠ACD+CED=60°+115°=175°,

故選C

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某校計(jì)劃購(gòu)買(mǎi)一批籃球和足球,已知購(gòu)買(mǎi)2個(gè)籃球和1個(gè)足球共需320元,購(gòu)買(mǎi)3個(gè)籃球和2個(gè)足球共需540元.

(1)求每個(gè)籃球和每個(gè)足球的售價(jià);

(2)如果學(xué)校計(jì)劃購(gòu)買(mǎi)這兩種球共50個(gè),總費(fèi)用不超過(guò)5500元,那么最多可購(gòu)買(mǎi)多少個(gè)足球?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】對(duì)于拋物線

它與軸交點(diǎn)的坐標(biāo)為_(kāi)_______,與軸交點(diǎn)的坐標(biāo)為_(kāi)_______,頂點(diǎn)坐標(biāo)為_(kāi)_______.

在所給的平面直角坐標(biāo)系中畫(huà)出此時(shí)拋物線;

結(jié)合圖象回答問(wèn)題:當(dāng)時(shí),的取值范圍是________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】△ABC∠A、∠B、∠C的對(duì)邊分別是a、b、c, 下列命題為真命題的是( )

A.如果∠A=2B=3C,ABC是直角三角形

B.如果∠A:B:C=3: 4: 5,ABC是直角三角形

C.如果a: b: c=1: 2: 2,ABC是直角三角形

D.如果a: b: c=3: 4: 5,ABC是直角三角形

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】工人師傅用米長(zhǎng)的鋁合金材料制作一個(gè)如圖所示的矩形窗框,圖中的①、②、③區(qū)域都是矩形,且,分別是、的中點(diǎn).(說(shuō)明:圖中黑線部分均需要使用鋁合金材料制作,鋁合金材料寬度忽略不計(jì)).

當(dāng)矩形窗框的透光面積是平方米時(shí),求的長(zhǎng)度.

當(dāng)為多長(zhǎng)時(shí),矩形窗框的透光面積最大?最大面積是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,小華剪了兩條寬均為的紙條,交叉疊放在一起,且它們的交角為,則它們重疊部分的面積為(

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC,ADBC邊上的高線,CEAB邊上的中線,DGCEG, CD=AE.

(1)求證: CG=EG.

(2)已知BC=13, CD=5,連結(jié)ED,EDC 的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】曉東在解一元二次方程時(shí),發(fā)現(xiàn)有這樣一種解法:如:解方程x(x+4)=6.

解:原方程可變形,得[(x+2)﹣2][(x+2)+2]=6.(x+2)2﹣22=6,(x+2)2=6+22,(x+2)2=10.直接開(kāi)平方并整理,得.我們稱(chēng)曉東這種解法為平均數(shù)法”.

(1)下面是曉東用平均數(shù)法解方程(x+2)(x+6)=5時(shí)寫(xiě)的解題過(guò)程.

解:原方程可變形,得

[(x+□)﹣〇][(x+□)+〇]=5.

(x+□)2﹣〇2=5,

(x+□)2=5+〇2

直接開(kāi)平方并整理,得x1=,x2=¤.

上述過(guò)程中的“□”,“〇”,“”,“¤”表示的數(shù)分別為   ,      ,   

(2)請(qǐng)用平均數(shù)法解方程:(x﹣3)(x+1)=5.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某工廠安排甲、乙兩個(gè)運(yùn)輸隊(duì)各從倉(cāng)庫(kù)調(diào)運(yùn)物資300噸,兩隊(duì)同時(shí)開(kāi)始工作,甲運(yùn)輸隊(duì)工作3天后因故停止,2天后重新開(kāi)始工作,由于工廠調(diào)離了部分工人,甲運(yùn)輸?shù)墓ぷ餍式档偷皆瓉?lái)的甲、乙運(yùn)輸隊(duì)調(diào)運(yùn)物資的數(shù)量與甲工作時(shí)間的函數(shù)圖象如圖所示.

____________

求甲運(yùn)輸隊(duì)重新開(kāi)始工作后,甲運(yùn)輸隊(duì)調(diào)運(yùn)物資的數(shù)量與工作時(shí)間的函數(shù)關(guān)系式;

直接寫(xiě)出乙運(yùn)輸隊(duì)比甲運(yùn)輸隊(duì)多運(yùn)50噸物資時(shí)x的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案