已知:在直角梯形ABCD中,AD∥BC,∠C=90°,AB=AD=25,BC=32.連接BD,AE⊥BD,垂足為E.

(1)求證:△ABE∽△DBC;

(2)求線段AE的長.

 

【答案】

(1)證明見解析;(2)15.

【解析】

試題分析:(1)由等腰三角形的性質可知∠ABD=∠ADB,由AD∥BC可知,∠ADB=∠DBC,由此可得∠ABD=∠DBC,又∵∠AEB=∠C=90°,利用“AA”可證△ABE∽△DBC;(2)由等腰三角形的性質可知,BD=2BE,根據△ABE∽△DBC,利用相似比求BE,在Rt△ABE中,利用勾股定理求AE.

試題解析:(1)證明:∵AB=AD=25,∴∠ABD=∠ADB.

∵AD∥BC,∴∠ADB=∠DBC. ∴∠ABD=∠DBC.

∵AE⊥BD,∴∠AEB=∠C=90°!唷鰽BE∽△DBC.

(2)∵AB=AD,又AE⊥BD,∴BE=DE. ∴BD=2BE.

由△ABE∽△DBC,得.

∵AB=AD=25,BC=32,∴,解得BE=20.

.

考點:1.直角梯形的性質;2.等腰三角形的性質;3.平行的性質;4.相似三角形的判定和性質;5.勾股定理.

 

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

已知:在直角梯形ABCD中,AD∥BC,AB⊥BC,AD=2,BC=3,設∠BCD=a,以D為旋轉中心,將腰精英家教網DC逆時針旋轉90°至DE,連接AE、CE.
(1)當a=45°時,求△EAD的面積;
(2)當a=30°時,求△EAD的面積;
(3)當0°<a<90°時,猜想△EAD的面積與α大小有何關系?若有關,寫出△EAD的面積S與a的關系式;若無關,請證明結論.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知:在直角梯形COAB中,OC∥AB,以O為原點建立平面直角坐標系,A,B,C三點的坐標分別為A(8,0),B(8,10),C(0,4),點D為線段BC的中點,動點P從點O出發(fā),以每秒1個單位的速度,沿折線OABD的路線移動,移動的時間為t秒.
(1)求直線BC的解析式;
(2)若動點P在線段OA上移動,當t為何值時,四邊形OPDC的面積是梯形COAB面積的
27
;
(3)動點P從點O出發(fā),沿折線OABD的路線移動過程中,設△OPD的面積為S,請寫出S與t的精英家教網函數(shù)關系式,并指出自變量t的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2012•鐵嶺)已知:在直角梯形ABCD中,AD∥BC,∠C=90°,AB=AD=25,BC=32.連接BD,AE⊥BD垂足為E.
(1)求證:△ABE∽△DBC;
(2)求線段AE的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,已知:在直角梯形ABCD中,AB∥CD,AD⊥CD,AB=BC,又AE⊥BC于E
(1)求證:AD=AE;
(2)若∠B=60°,AD=3,求AC的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,已知:在直角梯形ABCD中,AB∥CD,AD⊥CD,AB=BC,又AE⊥BC于E.求證:AD=AE.

查看答案和解析>>

同步練習冊答案