【題目】如圖,D,E,F,G,H,I是三角形ABC三邊上的點(diǎn),連結(jié)EI,EFBC, GHAC, DIAB.

(1)寫出與IEC是同旁內(nèi)角的角。

(2)判斷GHC與FEC是否相等,并說(shuō)明理由。

(3)若EI平分FEC,C=56°,B=50°,求EID的度數(shù)。

【答案】(1)與IEC是同旁內(nèi)角的角是:C、EDI、EIC、EID ,(2)GHC=FEC ,理由見(jiàn)解析,(3)12°.

【解析】

試題分析:(1)根據(jù)同旁內(nèi)角的定義確定即可;(2)利用平行線的性質(zhì)得出FEC+C=180°GHC+C=180°,再利用補(bǔ)角的性質(zhì)即可得出結(jié)論;(3)利用平行線的性質(zhì)得出FEC=180°-C=124°,DIC=B=50°,利用角的平分線得出FEI=FEC=62°,然后利用角的和差關(guān)系即可得出結(jié)論.

試題解析:(1)與IEC是同旁內(nèi)角的角是:C、EDI、EIC、EID

(2)GHC=FEC

理由:EFBC

∴∠FEC+C=180°

GHAC

∴∠GHC+C=180°

∴∠GHC=FEC

(3) EFBC,C=56°

∴∠FEC+C=180°

∴∠FEC=180°-C=124°

EI平分FEC

∴∠FEI=FEC=62°

∴∠FEI=EIC=62°

DIAB,B=50°

∴∠DIC=B=50°

∴∠EID=EIC-DIC=12°

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,射線OA射線CB,C=OAB=100°.點(diǎn)DE在線段CB上,且DOB=BOA, OE平分DOC

1)試說(shuō)明ABOC的理由;

2)試求BOE的度數(shù);

3)平移線段AB;

試問(wèn)OBCODC的值是否會(huì)發(fā)生變化?若不會(huì),請(qǐng)求出這個(gè)比值;若會(huì),請(qǐng)找出相應(yīng)變化規(guī)律.

若在平移過(guò)程中存在某種情況使得OEC=OBA,試求此時(shí)OEC的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,二次函數(shù)y=ax2+bx+c(a≠0)的圖象經(jīng)過(guò)點(diǎn)(﹣1,2),且與X軸交點(diǎn)的橫坐標(biāo)分別為x1,x2,其中﹣2<x1<﹣1,0<x2<1,下列結(jié)論:

①4a﹣2b+c<0;②2a﹣b<0;③a+c<1;④b2+8a>4ac,

其中正確的有( )

A.1個(gè) B.2個(gè) C.3個(gè) D.4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)y=﹣x2+x+2,則當(dāng)y0時(shí),自變量x的取值范圍是(

A.x﹣1或x2 B.﹣1x2

C.x﹣2或x1 D.﹣2x1

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列說(shuō)法中正確的是( )

A.“打開(kāi)電視機(jī),正在播放《動(dòng)物世界》”是必然事件

B.某種彩票的中獎(jiǎng)概率為,說(shuō)明每買1000張,一定有一張中獎(jiǎng)

C.拋擲一枚質(zhì)地均勻的硬幣一次,出現(xiàn)正面朝上的概率為

D.想了解長(zhǎng)沙市所有城鎮(zhèn)居民的人均年收入水平,宜采用抽樣調(diào)查

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,每個(gè)小正方形的邊長(zhǎng)為1,點(diǎn)A的坐標(biāo)為(﹣3,2).請(qǐng)按要求分別完成下列各小題:

(1)把ABC向下平移4個(gè)單位得到A1B1C1,畫出A1B1C1,點(diǎn)A1的坐標(biāo)是 ;

(2)畫出ABC關(guān)于y軸對(duì)稱的A2B2C2;點(diǎn)C2的坐標(biāo)是 ;

(3)求ABC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】能使兩個(gè)直角三角形全等的條件是( )

A. 兩直角邊對(duì)應(yīng)相等 B. 一銳角對(duì)應(yīng)相等

C. 兩銳角對(duì)應(yīng)相等 D. 斜邊相等

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:如圖,直線y=3x+3與x軸交于C點(diǎn),與y軸交于A點(diǎn),B點(diǎn)在x軸上,OAB是等腰直角三角形.

(1)求過(guò)A、B、C三點(diǎn)的拋物線的解析式;

(2)若直線CDAB交拋物線于D點(diǎn),求D點(diǎn)的坐標(biāo);

(3)若P點(diǎn)是拋物線上的動(dòng)點(diǎn),且在第一象限,那么PAB是否有最大面積?若有,求出此時(shí)P點(diǎn)的坐標(biāo)和PAB的最大面積;若沒(méi)有,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列正多邊形材料中,不能單獨(dú)用來(lái)鋪滿地面的是( )

A正三角形B正四邊形C正五邊形D正六邊形

查看答案和解析>>

同步練習(xí)冊(cè)答案