精英家教網 > 初中數學 > 題目詳情

【題目】若不等式(m-3)x|m2|+2>0是關于x的一元一次不等式m的值為________

【答案】1

【解析】

利用一元一次不等式的定義判斷即可確定出m的值.

不等式(m3)x|m2|+2>0是關于x的一元一次不等式,

∴|m2|=1,且m3≠0,

解得:m=3(舍去)m=1,

m的值為1,

故答案為:1

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】問題提出:如圖1,在Rt△ABC中,∠ACB=90°,CB=4,CA=6,⊙C半徑為2,P為圓上一動點,連結AP、BP,求AP+BP的最小值.

(1)嘗試解決:為了解決這個問題,下面給出一種解題思路:如圖2,連接CP,在CB上取點D,使CD=1,則有,又∵∠PCD=∠BCP,∴△PCD∽△BCP.∴,∴PD=BP,∴AP+BP=AP+PD.

請你完成余下的思考,并直接寫出答案:AP+BP的最小值為   

(2)自主探索:在“問題提出”的條件不變的情況下, AP+BP的最小值為   

(3)拓展延伸:已知扇形COD中,∠COD=90°,OC=6,OA=3,OB=5,點P是上一點,求2PA+PB的最小值.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在平面直角坐標系中,反比例函數的圖象和矩形ABCD在第一象限,AD平行于軸,且AB=2,AD=4,點A的坐標為(2,6).

1)直接寫出BC、D三點的坐標.

2)若將矩形向下平移,矩形的兩個頂點恰好同時落在反比例函數的圖象上,猜想這是哪兩個點,并求矩形的平移距離和反比例函數的解析式.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】已知a1+a2=1,a2+a3=2,a3+a4=3,…,a99+a100=99,a100+a1=100,那么a1+a2+a3+…a100= 。

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】洲際彈道導彈的速度會隨著時間的變化而變化,某種型號的洲際彈道導彈的速度v(km/h)與時間t(h)的關系是v=100050t,若導彈發(fā)出0.5h即將擊中目標,則此時該導彈的速度應為________km/h

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】因式分解2xa-b+8ya-b)提取的公因式是(

A.a-bB.xy

C.2x+8yD.2a-b

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】每年5月的第二周為:“職業(yè)教育活動周”,今年我市展開了以“弘揚工匠精神,打造技能強國”為主題的系列活動,活動期間某職業(yè)中學組織全校師生并邀請學生家長和社區(qū)居民參加“職教體驗觀摩”活動,相關職業(yè)技術人員進行了現場演示,活動后該校隨機抽取了部分學生進行調查:“你最感興趣的一種職業(yè)技能是什么?”并對此進行了統(tǒng)計,繪制了統(tǒng)計圖(均不完整).

(1)補全條形統(tǒng)計圖和扇形統(tǒng)計圖;

(2)若該校共有3000名學生,請估計該校對“工藝設計”最感興趣的學生有多少人?

(3)要從這些被調查的學生中隨機抽取一人進行訪談,那么正好抽到對“機電維修”最感興趣的學生的概率是   

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖.在Rt△ABC中,∠A=30°,DE垂直平分斜邊AC,交AB于D,E為垂足,連接CD,若BD=1,則AC的長是_____

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】正方形ABCD的邊長為acm,E、F分別是BC、CD的中點,連接BF、DE,則圖中陰影部分的面積是__ cm2

查看答案和解析>>

同步練習冊答案