【題目】如圖1,菱形ABCD,AB=4,∠ADC=120o,連接對角線AC、BD交于點(diǎn)O,
(1)如圖2,將△AOD沿DB平移,使點(diǎn)D與點(diǎn)O重合,求平移后的△A′BO與菱形ABCD重合部分的面積.
(2)如圖3,將△A′BO繞點(diǎn)O逆時針旋轉(zhuǎn)交AB于點(diǎn)E′,交BC于點(diǎn)F,
①求證:BE′+BF=2,
②求出四邊形OE′BF的面積.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一個機(jī)器人從數(shù)軸原點(diǎn)出發(fā),沿數(shù)軸正方向,以每前進(jìn)3步后退2步的程序運(yùn)動。設(shè)該機(jī)器人每秒鐘前進(jìn)或后退1步,并且每步的距離是1個單位長,表示第秒時機(jī)器人在數(shù)軸上的位置所對應(yīng)的數(shù)。給出下列結(jié)論:①;②;③;④。其中,正確的結(jié)論的序號是( )
A.①③B.②③C.①②③D.①②④
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】中國新版高鐵“復(fù)興號”率先在北京南站和上海虹橋站雙向首發(fā)“復(fù)興號”高鐵從某車站出發(fā),在行駛過程中速度(千米/分鐘)與時間(分鐘)的函數(shù)關(guān)系如圖所示.
(1)當(dāng)時,求關(guān)于工的函數(shù)表達(dá)式,
(2)求點(diǎn)的坐標(biāo).
(3)求高鐵在時間段行駛的路程.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】新春佳節(jié),電子鞭炮因其安全、無污染開始走俏.某商店經(jīng)銷一種電子鞭炮,已知這種電子鞭炮的成本價為每盒80元,市場調(diào)查發(fā)現(xiàn),該種電子鞭炮每天的銷售量y(盒)與銷售單價x(元)有如下關(guān)系:y=﹣2x+320(80≤x≤160).設(shè)這種電子鞭炮每天的銷售利潤為w元.
(1)求w與x之間的函數(shù)關(guān)系式;
(2)該種電子鞭炮銷售單價定為多少元時,每天的銷售利潤最大?最大利潤是多少元?
(3)該商店銷售這種電子鞭炮要想每天獲得2400元的銷售利潤,又想買得快.那么銷售單價應(yīng)定為多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,PB與⊙O相切于點(diǎn)B,過點(diǎn)B作OP的垂線BA,垂足為C,交⊙O于點(diǎn)A,連結(jié)PA,AO,AO的延長線交⊙O于點(diǎn)E,與PB的延長線交于點(diǎn)D.
(1)求證:PA是⊙O的切線;
(2)若tan∠BAD=,且OC=4,求BD的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)A的坐標(biāo)為(0,6),點(diǎn)B在x軸的正半軸上.若點(diǎn)P、Q在線段AB上,且PQ為某個一邊與x軸平行的矩形的對角線,則稱這個矩形為點(diǎn)P、Q的“涵矩形”。下圖為點(diǎn)P、Q的“涵矩形”的示意圖.
(1)點(diǎn)B的坐標(biāo)為(3,0);
①若點(diǎn)P的橫坐標(biāo)為,點(diǎn)Q與點(diǎn)B重合,則點(diǎn)P、Q的“涵矩形”的周長為 .
②若點(diǎn)P、Q的“涵矩形”的周長為6,點(diǎn)P的坐標(biāo)為(1,4),則點(diǎn)E(2,1),F(1,2),G(4,0)中,能夠成為點(diǎn)P、Q的“涵矩形”的頂點(diǎn)的是 .
(2)四邊形PMQN是點(diǎn)P、Q的“涵矩形”,點(diǎn)M在△AOB的內(nèi)部,且它是正方形;
①當(dāng)正方形PMQN的周長為8,點(diǎn)P的橫坐標(biāo)為3時,求點(diǎn)Q的坐標(biāo).
②當(dāng)正方形PMQN的對角線長度為/2時,連結(jié)OM.直接寫出線段OM的取值范圍 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,點(diǎn)D是等腰Rt△ABC的斜邊BC上一動點(diǎn),連接AD,作等腰Rt△ADE,使AD=AE,且∠DAE=90°連接BE、CE.
(1)判斷BD與CE的數(shù)量關(guān)系與位置關(guān)系,并進(jìn)行證明;
(2)當(dāng)四邊形ADCE的周長最小值是6時,求BC的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,直線y=x+b與雙曲線y=的一個交點(diǎn)為A(2,4),與y軸交于點(diǎn)B.
(1)求m的值和點(diǎn)B的坐標(biāo);
(2)點(diǎn)P在雙曲線y=上,△OBP的面積為8,直接寫出點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,以四邊形ABCD的邊AB、AD為邊分別向外側(cè)作等邊三角形ABF和ADE,連接BE、DF.
(1)當(dāng)四邊形ABCD為正方形時(如圖1),則線段BE與DF的數(shù)量關(guān)系是 .
(2)當(dāng)四邊形ABCD為平行四邊形時(如圖2),問(1)中的結(jié)論是否還成立?若成立,請證明;若不成立,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com