【題目】每天鍛煉一小時,健康生活一輩子.為了選拔陽光大課間領(lǐng)操員,學校組織初中三個年級推選出來的15名領(lǐng)操員進行比賽,成績?nèi)缦卤恚?/span>

成績/

7

8

9

10

人數(shù)/

2

5

4

4

(1)這組數(shù)據(jù)的眾數(shù)是   ,中位數(shù)是   

(2)已知獲得10分的選手中,七、八、九年級分別有1人、2人、1人,學校準備從中隨機抽取兩人領(lǐng)操,求恰好抽到八年級兩名領(lǐng)操員的概率.

【答案】(1)8、9;(2)恰好抽到八年級兩名領(lǐng)操員的概率為

【解析】

(1)根據(jù)中位數(shù)和眾數(shù)的定義分析;(2)用樹狀圖表示所有可能情況,根據(jù)概率的計算公式可求得結(jié)果.

解:(1)由于8分出現(xiàn)次數(shù)最多,

所以眾數(shù)為8,

中位數(shù)為第8個數(shù),即中位數(shù)為9,

故答案為:8、9;

(2)畫樹狀圖如下:

由樹狀圖可知,共有12種等可能結(jié)果,其中恰好抽到八年級兩名領(lǐng)操員的有2種結(jié)果,

所以恰好抽到八年級兩名領(lǐng)操員的概率為=

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】將矩形ABCD折疊使A,C重合,折痕交BCE,交ADF,

1)求證:四邊形AECF為菱形;

2)若AB=4BC=8,求菱形的邊長;

3)在(2)的條件下折痕EF的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在四邊形ABCD中,BC=CD,∠C=2∠BAD.O是四邊形ABCD內(nèi)一點,且OA=OB=OD.求證:

(1)∠BOD=∠C;

(2)四邊形OBCD是菱形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】小蘇和小林在如圖所示的跑道上進行4×50米折返跑.在整個過程中,跑步者距起跑線的距離y(單位:m)與跑步時間t(單位:s)的對應(yīng)關(guān)系如下圖所示.下列敘述正確的是(

A. 兩人從起跑線同時出發(fā),同時到達終點

B. 小蘇跑全程的平均速度大于小林跑全程的平均速度

C. 小蘇前15s跑過的路程大于小林前15s跑過的路程

D. 小林在跑最后100m的過程中,與小蘇相遇2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】取一副三角板按如圖所示拼接,固定三角板ADC,將三角板ABC繞點A順時針方向旋轉(zhuǎn),旋轉(zhuǎn)角度為α(0°<α≤45°),得到△ABC′.

①當α為多少度時,ABDC?

②當旋轉(zhuǎn)到圖③所示位置時,α為多少度?

③連接BD,當0°<α≤45°時,探求∠DBC′+CAC′+BDC值的大小變化情況,并給出你的證明.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】我校八年級某班舉行演講比賽,決定購買,兩種筆記本作為獎品,已知,兩種筆記本的單價分別是元和.根據(jù)比賽設(shè)獎情況,需購買筆記本共.

(1)如果購買獎品共花費了元,這兩種筆記本各買了多少本?

(2)根據(jù)比賽設(shè)獎情況,決定所購買的種筆記本的數(shù)量不少于種筆記本數(shù)量,但又不多于種筆記本數(shù)量的.設(shè)買種筆記本本,買兩種筆記本的總費為.

①寫出()關(guān)于()的函數(shù)關(guān)系式,并求出自變量的取值范圍;

②購買這兩種筆記本各多少本時,花費最少?最少的費用是多少元?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】新定義運算“◎”,對于任意有理數(shù)a、b,都有a◎b=a2﹣ab+b﹣1,例如:3◎5=32﹣3×5+5﹣1=﹣2,若任意投擲一枚印有數(shù)字1~6的質(zhì)地均勻的骰子,將朝上的點數(shù)作為x的值,則代數(shù)式(x﹣3)◎(3+x)的值為非負數(shù)的概率是_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,CEABCD的邊AB的垂直平分線,垂足為點O,CEDA的延長線交于點E.連接AC,BE,DO,DOAC交于點F,則下列結(jié)論:

四邊形ACBE是菱形;

②∠ACD=∠BAE;

③AF:BE=2:3;

④S四邊形AFOE:SCOD=2:3.

其中正確的結(jié)論有_____.(填寫所有正確結(jié)論的序號)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,直線mn,等腰RtABC中,∠BAC90°,ABAC,點A、點B分別是mn上兩個動點,直角邊AC交直線n于點D,斜邊BC交直線m于點E

1)如圖(1)求證:∠DAO=∠ABO;

2)如圖(2),當?shù)妊?/span>RtABC運動到使點D恰為AC中點時,連接DE,求證:∠ADB=∠CDE

3)如圖(3),分別以OB、AB為直角邊作等腰直角BOD和等腰直角ABC,連結(jié)CD交直線n于點P,求的值.

查看答案和解析>>

同步練習冊答案