【題目】如圖,在四邊形ABCD中,BC=CD,∠C=2∠BAD.O是四邊形ABCD內一點,且OA=OB=OD.求證:
(1)∠BOD=∠C;
(2)四邊形OBCD是菱形.
【答案】證明見解析
【解析】
(1)延長AO到E,利用等邊對等角和角之間關系解答即可;
(2)連接OC,根據全等三角形的判定和性質以及菱形的判定解答即可.
(1)延長OA到E,如圖所示:
∵OA=OB,
∴∠ABO=∠BAO,
又∠BOE=∠ABO+∠BAO,
∴∠BOE=2∠BAO,
同理∠DOE=2∠DAO,
∴∠BOE+∠DOE=2∠BAO+2∠DAO=2(∠BAO+∠DAO)
即∠BOD=2∠BAD,
又∠C=2∠BAD,
∴∠BOD=∠C;
(2)連接OC,
∵OB=OD,CB=CD,OC=OC,
∴△OBC≌△ODC,
∴∠BOC=∠DOC,∠BCO=∠DCO,
∵∠BOD=∠BOC+∠DOC,∠BCD=∠BCO+∠DCO,
∴∠BOC=∠BOD,∠BCO=∠BCD,
又∠BOD=∠BCD,
∴∠BOC=∠BCO,
∴BO=BC,
又OB=OD,BC=CD,
∴OB=BC=CD=DO,
∴四邊形OBCD是菱形.
科目:初中數學 來源: 題型:
【題目】如圖1,AB為半圓O的直徑,半徑的長為4cm,點C為半圓上一動點,過點C作CE⊥AB,垂足為點E,點D為弧AC的中點,連接DE,如果DE=2OE,求線段AE的長.
小何根據學習函數的經驗,將此問題轉化為函數問題解決.
小華假設AE的長度為xcm,線段DE的長度為ycm.
(當點C與點A重合時,AE的長度為0cm),對函數y隨自變量x的變化而變化的規(guī)律進行探究.
下面是小何的探究過程,請補充完整:(說明:相關數據保留一位小數).
(1)通過取點、畫圖、測量,得到了x與y的幾組值,如下表:
x/cm | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
y/cm | 0 | 1.6 | 2.5 | 3.3 | 4.0 | 4.7 |
| 5.8 | 5.7 |
當x=6cm時,請你在圖中幫助小何完成作圖,并使用刻度尺度量此時線段DE的長度,填寫在表格空白處:
(2)在圖2中建立平面直角坐標系,描出補全后的表中各組對應值為坐標的點,畫出該函數的圖象;
(3)結合畫出的函數圖象解決問題,當DE=2OE時,AE的長度約為 cm.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在菱形ABOC中,∠ABO=120°,它的一個頂點C在反比例函數y=的圖象上,若將菱形向下平移2個單位,點A恰好落在函數圖象上,則該反比函數的表達式為( )
A. y=﹣ B. y=﹣ C. y=﹣ D. y=-
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖所示,兩個含有30°角的完全相同的三角板ABC和DEF沿直線l滑動,下列說法錯誤的是( )
A. 四邊形ACDF是平行四邊形 B. 當點E為BC中點時,四邊形ACDF是矩形
C. 當點B與點E重合時,四邊形ACDF是菱形 D. 四邊形ACDF不可能是正方形
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在正方形ABCD中,AB=3,點E,F分別在CD,AD上,CE=DF,BE,CF相交于點G.若圖中陰影部分的面積與正方形ABCD的面積之比為2:3,則△BCG的周長為_____.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在正六邊形ABCDEF中,對角線AE與BF相交于點M,BD與CE相交于點N.
(1)求證:AE=FB;
(2)在不添加任何輔助線的情況下,請直接寫出所有與△ABM全等的三角形.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】“每天鍛煉一小時,健康生活一輩子”.為了選拔“陽光大課間”領操員,學校組織初中三個年級推選出來的15名領操員進行比賽,成績如下表:
成績/分 | 7 | 8 | 9 | 10 |
人數/人 | 2 | 5 | 4 | 4 |
(1)這組數據的眾數是 ,中位數是 .
(2)已知獲得10分的選手中,七、八、九年級分別有1人、2人、1人,學校準備從中隨機抽取兩人領操,求恰好抽到八年級兩名領操員的概率.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,二次函數(a>0)圖象的頂點為D,其圖象與x軸的交點A、B的橫坐標分別為﹣1和3,則下列結論正確的是( )
A. 2a﹣b=0
B. a+b+c>0
C. 3a﹣c=0
D. 當a=時,△ABD是等腰直角三角形
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com