【題目】如圖,矩形的面積為,它的兩條對(duì)角線(xiàn)交于點(diǎn),以為兩鄰邊作平行四邊形,平行四邊形的對(duì)角線(xiàn)交于點(diǎn),同樣以、為兩鄰邊作平行四邊形,…,依此類(lèi)推,則平行四邊形的面積為(

A. B. C. D.

【答案】C

【解析】

根據(jù)矩形的對(duì)角線(xiàn)和平行四邊形的對(duì)角線(xiàn)都互相平分,所以上下兩平行線(xiàn)間的距離相等,平行四邊形的面積等于底×高,所以第一個(gè)平行四邊形是矩形的一半,第二個(gè)平行四邊形是第一個(gè)平行四邊形的一半,由此即可解答

根據(jù)矩形的對(duì)角線(xiàn)相等且互相平分,可得:平行四邊形ABC1O1底邊AB上的高為:BC;平行四邊形ABC2O2底邊AB上的高為:×BC= ()2BC;

∵S矩形ABCD=ABBC=5,

∴平行四邊形ABC1O1的面積為:×5;

∴平行四邊形ABC2O2的面積為:××5=()2×5;

由此可得:平行四邊形的面積為()n×5.

故選C.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某市為了鼓勵(lì)居民節(jié)約用水,采用分段計(jì)費(fèi)的方法按月計(jì)算每戶(hù)家庭的水費(fèi),月用水量不超過(guò)20時(shí),按2元/計(jì)費(fèi);月用水量超過(guò)20時(shí),其中的20仍按2元/收費(fèi),超過(guò)部分按元/計(jì)費(fèi).設(shè)每戶(hù)家庭用用水量為時(shí),應(yīng)交水費(fèi)元.

(1)分別求出時(shí)的函數(shù)表達(dá)式;

(2)小明家第二季度交納水費(fèi)的情況如下:

月份

四月份

五月份

六月份

交費(fèi)金額

30元

34元

42.6元

小明家這個(gè)季度共用水多少立方米?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】閱讀下列材料,并完成相應(yīng)任務(wù).

古希臘數(shù)學(xué)家,天文學(xué)家歐多克索斯(Eudoxus,約前400—347)曾提出:能否將一

條線(xiàn)段分成不相等的兩部分.使較短線(xiàn)段與較長(zhǎng)線(xiàn)段的比等于較長(zhǎng)線(xiàn)段與原線(xiàn)段的比,這個(gè)相等的比就是,黃金分割在我們生活中有廣泛運(yùn)用.黃金分割點(diǎn)也可以用折紙的方式得到.

第一步:裁一張正方形的紙片,先折出的中點(diǎn),然后展平,再折出線(xiàn)段,再展平;

第二步:將紙片沿折疊,使落到線(xiàn)段上,的對(duì)應(yīng)點(diǎn)為,展平;

第三步:沿折疊,使落在上,的對(duì)應(yīng)點(diǎn)為,展平,這時(shí)就是的黃金分割點(diǎn).

古希臘數(shù)學(xué)家,天文學(xué)家歐多克索斯(Eudoxus,約前400—347)曾提出:能否將一

條線(xiàn)段分成不相等的兩部分.使較短線(xiàn)段與較長(zhǎng)線(xiàn)段的比等于較長(zhǎng)線(xiàn)段與原線(xiàn)段的比,這個(gè)相等的比就是,黃金分割在我們生活中有廣泛運(yùn)用.黃金分割點(diǎn)也可以用折紙的方式得到.

第一步:裁一張正方形的紙片,先折出的中點(diǎn),然后展平,再折出線(xiàn)段,再展平;

第二步:將紙片沿折疊,使落到線(xiàn)段上,的對(duì)應(yīng)點(diǎn)為,展平;

第三步:沿折疊,使落在上,的對(duì)應(yīng)點(diǎn)為,展平,這時(shí)就是的黃金分割點(diǎn).

任務(wù):(1)試根據(jù)以上操作步驟證明就是的黃金分割點(diǎn);

2)請(qǐng)寫(xiě)出一個(gè)生活中應(yīng)用黃金分割的實(shí)際例子.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】港珠澳大橋,從2009年開(kāi)工建造,于20181024日正式通車(chē).其全長(zhǎng)55公里,連接港珠澳三地,集橋、島、隧于一體,是世界上最長(zhǎng)的跨海大橋.如圖是港珠澳大橋的海豚塔部分效果圖,為了測(cè)得海豚塔斜拉索頂端A距離海平面的高度,先測(cè)出斜拉索底端C到橋塔的距離(CD的長(zhǎng))約為100米,又在C點(diǎn)測(cè)得A點(diǎn)的仰角為30°,測(cè)得B點(diǎn)的俯角為20°,求斜拉索頂端A點(diǎn)到海平面B點(diǎn)的距離(AB的長(zhǎng)).(已知1.73tan20°≈0.36,結(jié)果精確到0.1

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】小新家、小華家和書(shū)店依次在東風(fēng)大街同一側(cè)(忽略三者與東風(fēng)大街的距離).小新小華兩人同時(shí)各自從家出發(fā)沿東風(fēng)大街勻速步行到書(shū)店買(mǎi)書(shū),已知小新到達(dá)書(shū)店用了20分鐘,小華的步行速度是40/分,設(shè)小新、小華離小華家的距離分別為y1(米)、y2(米),兩人離家后步行的時(shí)間為x(分),y1x的函數(shù)圖象如圖所示,根據(jù)圖象解決下列問(wèn)題:

(1)小新的速度為_____/分,a=_____;并在圖中畫(huà)出y2x的函數(shù)圖象

(2)求小新路過(guò)小華家后,y1x之間的函數(shù)關(guān)系式.

(3)直接寫(xiě)出兩人離小華家的距離相等時(shí)x的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知矩形和點(diǎn),當(dāng)點(diǎn)上任一位置(如圖所示)時(shí),易證得結(jié)論:,請(qǐng)你探究:當(dāng)點(diǎn)分別在圖、圖中的位置時(shí),、、又有怎樣的數(shù)量關(guān)系請(qǐng)你寫(xiě)出對(duì)上述兩種情況的探究結(jié)論,并利用圖證明你的結(jié)論.

答:對(duì)圖的探究結(jié)論為________;

對(duì)圖的探究結(jié)論為________;

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】ABC中,AB=AC,BAC=α,點(diǎn)P是△ABC內(nèi)一點(diǎn),且.連接PB,試探究PA,PB,PC滿(mǎn)足的等量關(guān)系.

圖1 圖2

(1)當(dāng)α=60°時(shí),ABP繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)60°得到,連接,如圖1所示

可以證得是等邊三角形,再由可得APC的大小為 度,進(jìn)而得到是直角三角形,這樣可以得到PA,PB,PC滿(mǎn)足的等量關(guān)系為 ;

(2)如圖2,當(dāng)α=120°時(shí),請(qǐng)參考(1)中的方法,探究PA,PB,PC滿(mǎn)足的等量關(guān)系,并給出證明

(3)PA,PB,PC滿(mǎn)足的等量關(guān)系為

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知正多邊形每個(gè)內(nèi)角比相鄰?fù)饨谴?/span>60°.

1)求這個(gè)正多邊形的邊數(shù);

2)求這個(gè)正多邊形的內(nèi)切圓與外切圓的半徑之比;

3)將這個(gè)多邊形對(duì)折,并完全重合,求得到圖形的內(nèi)角和是多少度(按一層計(jì)算)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,△ABC中,DBC的中點(diǎn),過(guò)D點(diǎn)的直線(xiàn)GFACF,交AC的平行線(xiàn)BGG點(diǎn),DE⊥DF,交AB于點(diǎn)E,連結(jié)EG、EF

1)求證:BGCF

2)請(qǐng)你判斷BE+CFEF的大小關(guān)系,并說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案