【題目】如圖,直線y=-x+2 與x軸、y軸分別相交于A、B兩點(diǎn),圓心P的坐標(biāo)為(-2,0),⊙P與y軸相切于點(diǎn)O.若將⊙P沿x軸向右移動,當(dāng)⊙P與該直線相交時,滿足橫坐標(biāo)為整數(shù)的點(diǎn)P的個數(shù)是( )
A. 3 B. 4 C. 5 D. 7
【答案】D
【解析】
根據(jù)直線與坐標(biāo)軸的交點(diǎn),得出A,B的坐標(biāo),再利用三角形相似得出圓與直線相切時的坐標(biāo),進(jìn)而得出相交時的坐標(biāo).
如圖
∵直線y=-x+2 與x軸、y軸分別相交于A、B兩點(diǎn),圓心P的坐標(biāo)為(-2,0),
∴A點(diǎn)的坐標(biāo)為0=-x+2
x=6, A(6,0),
B點(diǎn)的坐標(biāo)為:(0,2 ),
∴AB=4
將圓P沿x軸向左移動,當(dāng)圓P與該直線相切于C1 時,P1C1 =2,
根據(jù)△AP1C1∽△ABO,
∴AP 1 =4,
∴P 1 的坐標(biāo)為:(2,0),
將圓P沿x軸向左移動,當(dāng)圓P與該直線相切于C2 時,P2C2 =2,
根據(jù)△AP2C2∽△ABO,
∴AP2 =4,
P2 的坐標(biāo)為:(10,0),
從2到10,當(dāng)⊙P與該直線相交時,整數(shù)點(diǎn)有,3,4,5,6,7,8,9故橫坐標(biāo)為整數(shù)的點(diǎn)P的個數(shù)是7個
故選D
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在平面直角坐標(biāo)系中有一格點(diǎn)三角形,該三角形的三個頂點(diǎn)為:A(1,1),B(-3,1),C(-3,-1).
(1)若△ABC的外接圓的圓心為P,則點(diǎn)P的坐標(biāo)為 ,⊙P的半徑為 ;
(2)如圖所示,在11×8的網(wǎng)格圖內(nèi),以坐標(biāo)原點(diǎn)O點(diǎn)為位似中心,將△ABC按相似比2:1放大,A、B、C的對應(yīng)點(diǎn)分別為A'、B'、C'.
①畫出△A'B'C';
②將△A'B'C'沿x軸方向平移,需平移 個單位長度,能使得B'C'所在的直線與⊙P相切.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD中,AC平分∠BAD,∠ADC=∠ACB=90°,E為AB的中點(diǎn),AC與DE交于點(diǎn)F.
(1)求證:CE∥AD;
(2)求證:AC2=ABAD;
(3)若AC=,AB=8,求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示:已知∠ABC=120°,作等邊△ACD,將△ACD旋轉(zhuǎn)60°,得到△CDE,AB=3,BC=2,求BD和∠ABD.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知CB是⊙O的弦,CD是⊙O的直徑,點(diǎn)A為CD延長線上一點(diǎn),BC=AB,∠CAB=30°.
(1)求證:AB是⊙O的切線;(2)若⊙O的半徑為2,求的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)y=-x2+2x+3.
(1)求函數(shù)圖像的頂點(diǎn)坐標(biāo),并畫出這個函數(shù)的圖像;
(2)根據(jù)圖像,直接寫出:
①當(dāng)函數(shù)值y為正數(shù)時,自變量x的取值范圍;
②當(dāng)-2<x<2時,函數(shù)值y的取值范圍;
③若經(jīng)過點(diǎn)(0,k)且與x軸平行的直線l與y=-x2+2x+3的圖像有公共點(diǎn),求k的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下面是小元設(shè)計的“過圓上一點(diǎn)作圓的切線”的尺規(guī)作圖過程.
已知:如圖,⊙O及⊙O上一點(diǎn)P.
求作:過點(diǎn)P的⊙O的切線.
作法:如圖,
①作射線OP;
②在直線OP外任取一點(diǎn)A,以點(diǎn)A為圓心,AP為半徑作⊙A,與射線OP交于另一點(diǎn)B;
③連接并延長BA與⊙A交于點(diǎn)C;
④作直線PC;
則直線PC即為所求.
根據(jù)小元設(shè)計的尺規(guī)作圖過程,
(1)使用直尺和圓規(guī),補(bǔ)全圖形;(保留作圖痕跡)
(2)完成下面的證明:
證明:∵ BC是⊙A的直徑,
∴∠BPC=90°(____________)(填推理的依據(jù)).
∴OP⊥PC.
又∵OP是⊙O的半徑,
∴PC是⊙O的切線(____________)(填推理的依據(jù)).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,∠BAC=60°,∠ABC=45°,AB=4,D是線段BC上的一個動點(diǎn),以AD為直徑作⊙O分別交AB、AC于E、F,連結(jié)EF,則線段EF長度的最小值為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,∠ACB=90°,∠ABC=30°,將△ABC繞頂點(diǎn)C順時針旋轉(zhuǎn),旋轉(zhuǎn)角為θ(0°<θ<180°),得到△A'B'C.
(1)如圖1,當(dāng)AB∥CB'時,設(shè)A'B'與CB相交于點(diǎn)D,求證:△A'CD是等邊三角形.
(2)若E為AC的中點(diǎn),P為A'B'的中點(diǎn),則EP的最大值是多少,這時旋轉(zhuǎn)角θ為多少度.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com