【題目】如圖,四邊形ABCD中,AC平分∠BAD,∠ADC=∠ACB=90°,E為AB的中點,AC與DE交于點F.
(1)求證:CE∥AD;
(2)求證:AC2=ABAD;
(3)若AC=,AB=8,求的值.
【答案】(1)證明見解析;(2)證明見解析;(3).
【解析】
(1)欲證明CE∥AD,只要證明∠ACE=∠CAD即可;
(2)由AC平分∠DAB得∠DAC=∠CAB,加上∠ADC=∠ACB=90°可迅速得出結(jié)論;
(3)證明△AFD∽△CFE相似.
解:(1)∵E為AB中點,∠ACB=90°
∴CE=AB=AE,
∴∠EAC=∠ECA,
∵∠DAC=∠CAB,
∴∠DAC=∠ECA,
∴CE∥AD;
(2)證明:∵AC平分∠DAB,
∴∠DAC=∠CAB,
∵∠ADC=∠ACB=90°,
∴△ADC∽△ACB,
∴
∴AC2=ABAD;
(3)由(2)證得,AC2=ABAD,
∵AC=,AB=8,
∴
∵∠ACB=90°,E為AB的中點,
∴CE=AB=4,
∵CE∥AD
∴△AFD∽△CFE,
∴
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,中線BE,CD相交于點O,連接DE,下列結(jié)論: ①=; ②=;③=;④=.其中正確的個數(shù)有( )
A. 1個 B. 2個 C. 3個 D. 4個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知△ABC.
(1)求AC的長;
(2)先將△ABC向右平移2個單位得到△A′B′C′,寫出A點的對應(yīng)點A′的坐標(biāo);
(3)再將△ABC繞點C按逆時針方向旋轉(zhuǎn)90°后得到△A1B1C1,寫出A點對應(yīng)點A1的坐標(biāo).
(4)求點A到A′所畫過痕跡的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知AD∥BC,AB⊥BC,AB=3.點E為射線 BC上一個動點,連接AE,將△ABE沿AE折疊,點B落在點B′處,過點B′作AD的垂線,分別交AD,BC于點M,N.當(dāng)點B′為線段MN的三等分點時,BE的長為__________ .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠C=90°,以點B為圓心,任意長為半徑畫弧,分別交AB、BC于點M、N分別以點M、N為圓心,以大于MN的長度為半徑畫弧兩弧相交于點P過點P作線段BD,交AC于點D,過點D作DE⊥AB于點E,則下列結(jié)論①CD=ED;②∠ABD=∠ABC;③BC=BE;④AE=BE中,一定正確的是( )
A. ①②③B. ① ② ④C. ①③④D. ②③④
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,反比例函數(shù)y= 的圖象與一次函數(shù)y=x+b的圖象交
于點A(1,4)、點B(-4,n).
(1)求一次函數(shù)和反比例函數(shù)的解析式;
(2)求△OAB的面積;
(3)直接寫出一次函數(shù)值大于反比例函數(shù)值的自變量x的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知鈍角三角形ABC,將△ABC繞點A按逆時針方向旋轉(zhuǎn)110°得到△AB′C′,連接BB′,若AC′∥BB′,則∠CAB′的度數(shù)為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線y=-x+2 與x軸、y軸分別相交于A、B兩點,圓心P的坐標(biāo)為(-2,0),⊙P與y軸相切于點O.若將⊙P沿x軸向右移動,當(dāng)⊙P與該直線相交時,滿足橫坐標(biāo)為整數(shù)的點P的個數(shù)是( )
A. 3 B. 4 C. 5 D. 7
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】點C、D在線段AB上,若點C是線段AD的中點,2BD>AD,則下列結(jié)論正確的是( ).
A. CD<AD- BD B. AB>2BD C. BD>AD D. BC>AD
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com