【題目】(本小題滿分10分)如圖,一次函數(shù)的圖象與反比例函數(shù)為常數(shù),且)的圖象交于A1,a)、B兩點.

1)求反比例函數(shù)的表達式及點B的坐標;

2)在x軸上找一點P,使PA+PB的值最小,求滿足條件的點P的坐標及△PAB的面積.

【答案】1,;(2P,

【解析】

試題(1)由點A在一次函數(shù)圖象上,結(jié)合一次函數(shù)解析式可求出點A的坐標,再由點A的坐標利用待定系數(shù)法即可求出反比例函數(shù)解析式,聯(lián)立兩函數(shù)解析式成方程組,解方程組即可求出點B坐標;

2)作點B作關(guān)于x軸的對稱點D,交x軸于點C,連接AD,交x軸于點P,連接PB.由點B、D的對稱性結(jié)合點B的坐標找出點D的坐標,設(shè)直線AD的解析式為y=mx+n,結(jié)合點A、D的坐標利用待定系數(shù)法求出直線AD的解析式,令直線AD的解析式中y=0求出點P的坐標,再通過分割圖形結(jié)合三角形的面積公式即可得出結(jié)論.

試題解析:(1)把點A1,a)代入一次函數(shù)y=-x+4,

得:a=-1+4,解得:a=3,

A的坐標為(1,3).

把點A1,3)代入反比例函數(shù)y=,

得:3=k,

反比例函數(shù)的表達式y=,

聯(lián)立兩個函數(shù)關(guān)系式成方程組得:,

解得:,或,

B的坐標為(31).

2)作點B作關(guān)于x軸的對稱點D,交x軸于點C,連接AD,交x軸于點P,此時PA+PB的值最小,連接PB,如圖所示.

B、D關(guān)于x軸對稱,點B的坐標為(3,1),

D的坐標為(3,- 1).

設(shè)直線AD的解析式為y=mx+n

A,D兩點代入得:

解得:,

直線AD的解析式為y=-2x+5

y=-2x+5y=0,則-2x+5=0,

解得:x=,

P的坐標為(0).

SPAB=SABD-SPBD=BDxB-xA-BDxB-xP

=×[1--13-1-×[1--13-

=

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】在一個不透明的盒子里有5個小球,分別標有數(shù)字﹣3,﹣2,﹣1,﹣,﹣,這些小球除所標的數(shù)不同外其余都相同,先從盒子隨機摸出1個球,記下所標的數(shù),再從剩下的球中隨機摸出1個球,記下所標的數(shù).

(1)用畫樹狀圖或列表的方法求兩次摸出的球所標的數(shù)之積不大于1的概率.

(2)若以第一次摸出球上的數(shù)字為橫坐標,第二次摸出球上的數(shù)字為縱坐標確定一點,直接寫出該點在雙曲線y=上的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某校部分團員參加社會公益活動,準備購進一批許愿瓶進行銷售,并將所得利潤捐給慈善機構(gòu).根據(jù)市場調(diào)查,這種許愿瓶一段時間內(nèi)的銷售量y個)與銷售單價x(元/個)之間的對應(yīng)關(guān)系如圖所示:

(1)試判斷yx之間的函數(shù)關(guān)系,并求出函數(shù)關(guān)系式;

(2)若許愿瓶的進價為6/個,按照上述市場調(diào)查的銷售規(guī)律,求銷售利潤w(元)與銷售單價x(元/個)之間的函數(shù)關(guān)系式;

(3)在(2)的條件下,若許愿瓶的進貨成本不超過900元,要想獲得最大的利潤,試確定這種許愿瓶的銷售單價,并求出此時的最大利潤.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在RtABC中,∠ACB90°,點DE分別在ABAC上,且CEBC,連接CD,將線段CD繞點C按順時針方向旋轉(zhuǎn)90°后得到CF,連接EF

1)求證:△BDC≌△EFC;

2)若EFCD,求證:∠BDC90°.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】人們在長期的數(shù)學實踐中總結(jié)了許多解決數(shù)學問題的方法,形成了許多光輝的數(shù)學想法,其中轉(zhuǎn)化思想是中學教學中最活躍,最實用,也是最重要的數(shù)學思想,例如將不規(guī)則圖形轉(zhuǎn)化為規(guī)則圖形就是研究圖形問題比較常用的一種方法.

問題提出:求邊長分別為、、、的三角形面積.

問題解決:

在解答這個問題時,先建立一個正方形網(wǎng)格(每個小正方形的邊長為1),再在網(wǎng)格中畫出邊長分別為

、的格點三角形(如圖),是角邊為12的直角三角形斜邊,是直角邊分別為13的直角三角形的斜邊,是直角邊分別為23的直角三角形斜邊,用一個大長方形的面積減去三個直角三角形的面積,這樣不需求的高,而借用網(wǎng)格就能計算它的面積.

1)請直接寫出圖①中的面積為____________.

2)類比遷移:求邊長分別為、、的三角形面積(請利用圖②的正方形網(wǎng)格畫出相應(yīng)的,并求出它的面積)

3)思維拓展:求邊長分別為,的三角形的面積

4)如圖(3),已知,以為邊向外作正方形,正方形,連接,若,則六邊形 的面積是_________.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,A、B是兩個工廠,L1、L2是兩條公路,現(xiàn)要在這一地區(qū)建一加油站,要求加油站到AB兩廠的路程相等,且到兩條路的距離相等,請用尺規(guī)作圖找出符合條件的點P

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】小王是新星廠的一名工人,請你閱讀下列信息:

信息一:工人工作時間:每天上午800—1200,下午1400—1800,每月工作25天;

信息二:小王生產(chǎn)甲、乙兩種產(chǎn)品的件數(shù)與所用時間的關(guān)系見下表:

生產(chǎn)甲種產(chǎn)品數(shù)()

生產(chǎn)乙種產(chǎn)品數(shù)()

所用時間(分鐘)

10

10

350

30

20

850

信息三:按件計酬,每生產(chǎn)一件甲種產(chǎn)品得1.50元,每生產(chǎn)一件乙種產(chǎn)品得2.80元;

信息四:該廠工人每月收入由底薪和計酬工資兩部分構(gòu)成,小王每月的底薪為1900元.請根據(jù)以上信息,解答下列問題:

(1)小王每生產(chǎn)一件甲種產(chǎn)品和一件乙種產(chǎn)品分別需要多少分鐘;

(2)20181月工廠要求小王生產(chǎn)甲種產(chǎn)品的件數(shù)不少于60件,則小王該月收入最多是多少元?此時小王生產(chǎn)的甲、乙兩種產(chǎn)品分別是多少件?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,RtAOB中,∠OAB=90°OA=AB,將RtAOB放置于直角坐標系中,OBx軸上,點O是原點,點A在第一象限.點A與點C關(guān)于x軸對稱,連結(jié)BC,OC.雙曲線 (x0)OA邊交于點D、與AB邊交于點E

(1)求點D的坐標;

(2)求證:四邊形ABCD是正方形;

(3)連結(jié)ACOB于點H,過點EEGAC于點G,交OA邊于點F,求四邊形OHGF的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】我們知道:等腰三角形兩腰上的高相等.

1)請你寫出它的逆命題:______

2)逆命題是真命題嗎?若是,請證明;若不是,請舉出反例(要求:畫出圖形,寫出已知,求證和證明過程).

查看答案和解析>>

同步練習冊答案