如圖,正方形ABCD邊長(zhǎng)為4,點(diǎn)P在邊AD上,且PE⊥AC,PF⊥BD,垂足分別為E、F,則PE+PF的值為            

解析試題分析:根據(jù)正方形的性質(zhì)結(jié)合PE⊥AC,PF⊥BD可得四邊形PEOF為矩形、△PDF為等腰直角三角形,再根據(jù)勾股定理即可求得結(jié)果.
∵正方形ABCD
∴∠AOD=90°,∠ADO=45°
∵PE⊥AC,PF⊥BD
∴四邊形PEOF為矩形,△PDF為等腰直角三角形
∴PE=OF,PF=DF
∵正方形ABCD邊長(zhǎng)為4


考點(diǎn):正方形的性質(zhì)
點(diǎn)評(píng):解答本題的關(guān)鍵是熟練掌握正方形的四個(gè)角都是直角,四條邊均相等.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

19、如圖:正方形ABCD,M是線(xiàn)段BC上一點(diǎn),且不與B、C重合,AE⊥DM于E,CF⊥DM于F.求證:AE2+CF2=AD2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,正方形ABCD中,E點(diǎn)在BC上,AE平分∠BAC.若BE=
2
cm,則△AEC面積為
 
cm2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,正方形ABCD中,AB=6,點(diǎn)E在邊CD上,且CD=3DE.將△ADE沿AE對(duì)折至△AFE,延長(zhǎng)EF交邊BC于點(diǎn)G,連接AG、CF.下列結(jié)論:①△ABG≌△AFG;②BG=GC;③AG∥CF;④S△FGC=3.其中正確結(jié)論的個(gè)數(shù)是( 。
A、1B、2C、3D、4

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

17、如圖,正方形ABCD的邊長(zhǎng)為4,將一個(gè)足夠大的直角三角板的直角頂點(diǎn)放于點(diǎn)A處,該三角板的兩條直角邊與CD交于點(diǎn)F,與CB延長(zhǎng)線(xiàn)交于點(diǎn)E,四邊形AECF的面積是
16

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,正方形ABCD的邊CD在正方形ECGF的邊CE上,連接BE、DG.
(1)若ED:DC=1:2,EF=12,試求DG的長(zhǎng).
(2)觀(guān)察猜想BE與DG之間的關(guān)系,并證明你的結(jié)論.

查看答案和解析>>

同步練習(xí)冊(cè)答案