【題目】在正方形ABCD中,對(duì)角線AC與BD交于點(diǎn)O;在Rt△PMN中,∠MPN=90°.
(1)如圖1,若點(diǎn)P與點(diǎn)O重合且PM⊥AD、PN⊥AB,分別交AD、AB于點(diǎn)E、F,請(qǐng)直接寫出PE與PF的數(shù)量關(guān)系;
(2)將圖1中的Rt△PMN繞點(diǎn)O順時(shí)針旋轉(zhuǎn)角度α(0°<α<45°).
①如圖2,在旋轉(zhuǎn)過程中(1)中的結(jié)論依然成立嗎?若成立,請(qǐng)證明;若不成立,請(qǐng)說明理由;
②如圖2,在旋轉(zhuǎn)過程中,當(dāng)∠DOM=15°時(shí),連接EF,若正方形的邊長為2,請(qǐng)直接寫出線段EF的長;
③如圖3,旋轉(zhuǎn)后,若Rt△PMN的頂點(diǎn)P在線段OB上移動(dòng)(不與點(diǎn)O、B重合),當(dāng)BD=3BP時(shí),猜想此時(shí)PE與PF的數(shù)量關(guān)系,并給出證明;當(dāng)BD=mBP時(shí),請(qǐng)直接寫出PE與PF的數(shù)量關(guān)系.
【答案】(1)PE=PF;(2)①成立;②;③PE=2PF,PE=(m﹣1)PF.
【解析】
試題分析:(1)由正方形的性質(zhì)和角平分線的性質(zhì)解答即可;
(2)①由正方形的性質(zhì)和旋轉(zhuǎn)的性質(zhì)證明△FOA≌△EOD,即可得到答案;
②作OG⊥AB于G,由余弦的概念求出OF的長,由勾股定理求值即可;
③過點(diǎn)P作HP⊥BD交AB于點(diǎn)H,由相似三角形的判定和性質(zhì)求出PE與PF的數(shù)量關(guān)系,由解答結(jié)果總結(jié)規(guī)律得到當(dāng)BD=mBP時(shí),PE與PF的數(shù)量關(guān)系.
試題解析:(1)PE=PF,理由:∵四邊形ABCD為正方形,∴∠BAC=∠DAC,又PM⊥AD、PN⊥AB,∴PE=PF;
(2)①成立,理由:∵AC、BD是正方形ABCD的對(duì)角線,∴OA=OD,∠FAO=∠EDO=45°,∠AOD=90°,∴∠DOE+∠AOE=90°,∵∠MPN=90°,∴∠FOA+∠AOE=90°,∴∠FOA=∠DOE,在△FOA和△EOD中,∵∠FAO=∠FDO,OA=OD,∠FOA=∠DOE,∴△FOA≌△EOD,∴OE=OF,即PE=PF;
②作OG⊥AB于G,∵∠DOM=15°,∴∠AOF=15°,則∠FOG=30°,∵cos∠FOG=,∴OF==,又OE=OF,∴EF=;
③PE=2PF,如圖3,過點(diǎn)P作HP⊥BD交AB于點(diǎn)H,則△HPB為等腰直角三角形,∠HPD=90°,∴HP=BP,∵BD=3BP,∴PD=2BP,∴PD=2 HP,又∵∠HPF+∠HPE=90°,∠DPE+∠HPE=90°,∴∠HPF=∠DPE,又∵∠BHP=∠EDP=45°,∴△PHF∽△PDE,∴,即PE=2PF,由此規(guī)律可知,當(dāng)BD=mBP時(shí),PE=(m﹣1)PF.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】問題:如圖(1),在Rt△ACB中,∠ACB=90°,AC=CB,∠DCE=45°,試探究AD、DE、EB滿足的等量關(guān)系.
[探究發(fā)現(xiàn)]
小聰同學(xué)利用圖形變換,將△CAD繞點(diǎn)C逆時(shí)針旋轉(zhuǎn)90°得到△CBH,連接EH,由已知條件易得∠EBH=90°,∠ECH=∠ECB+∠BCH=∠ECB+∠ACD=45°.根據(jù)“邊角邊”,可證△CEH≌ ,得EH=ED.
在Rt△HBE中,由 定理,可得BH2+EB2=EH2,由BH=AD,可得AD、DE、EB之間的等量關(guān)系是 .
[實(shí)踐運(yùn)用]
(1)如圖(2),在正方形ABCD中,△AEF的頂點(diǎn)E、F分別在BC、CD邊上,高AG與正方形的邊長相等,求∠EAF的度數(shù);
(2)在(1)條件下,連接BD,分別交AE、AF于點(diǎn)M、N,若BE=2,DF=3,BM=2,運(yùn)用小聰同學(xué)探究的結(jié)論,求正方形的邊長及MN的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】將某樣本數(shù)據(jù)分析整理后分成6組,且組距為5,畫頻數(shù)分布折線圖時(shí),從左到右第三組的組中值為20.5,則分布兩端虛設(shè)組組中值為 和 。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(2013年四川瀘州2分)下列各式計(jì)算正確的是【 】
A.(a7)2=a9 B.a(chǎn)7a2=a14 C.2a2+3a3=5a5 D.(ab)3=a3b3
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】等邊△ABC中,點(diǎn)E在AB上,點(diǎn)D在CA的延長線上,且ED=EC.試探索以下問題:
(1)如圖1,當(dāng)E為AB中點(diǎn)時(shí),試確定線段AD與BE的大小關(guān)系,請(qǐng)你直接寫出結(jié)論:
(2)如圖2,若點(diǎn)E為線段AB上任意一點(diǎn),(1)中結(jié)論是否成立,若成立,請(qǐng)證明結(jié)論,若不成立,請(qǐng)說明理由。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某種藥品原價(jià)每盒60元,由于醫(yī)療政策改革,價(jià)格經(jīng)過兩次下調(diào)后現(xiàn)在售價(jià)每盒48.6元,求平均每次下調(diào)的百分率.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com