【題目】如圖,在矩形ABCD中,邊AB是半圓O的直徑,點(diǎn)E是CD的中點(diǎn),BE交半圓O于點(diǎn)F,連接DF.
(1)求證:DF是半圓O的切線;
(2)若AB =8,AD =3,求BF的長.
【答案】(1)見解析;(2)
【解析】
(1)連接OF、OD、AF,根據(jù)矩形的性質(zhì)和已知條件可得DE=CD,OB=AB,DC∥AB,∠OAD=90°,然后利用SAS證出△AOD≌△FOD,即可證出∠OAD=∠OFD=90°,然后根據(jù)切線的判定定理即可證出結(jié)論;
(2)根據(jù)相似三角形的判定證出Rt△AOD∽Rt△FBA,然后列出比例式,根據(jù)比例式設(shè)AF=3x,BF=4x,然后根據(jù)勾股定理列出方程即可求出結(jié)論.
(1)證明:連接OF、OD、AF,
在矩形ABCD中,
∵點(diǎn)E是CD的中點(diǎn),點(diǎn)O是AB的中點(diǎn),
∴DE=CD,OB=AB,DC∥AB,∠OAD=90°
∴四邊形OBED為平行四邊形
∴OD∥BF
∴∠AOD=∠OBF,∠OFB=∠FOD
∵OB=OF
∴∠OBF=∠OFB
∴∠AOD=∠FOD,
∵OA=OF,OD=OD
∴△AOD≌△FOD(SAS)
∴∠OAD=∠OFD=90°,
∴OF⊥DF,即DF為半圓O的切線
(2)由(1)知:在Rt△AOD和Rt△FBA中,
∠AOD=∠OBF,∠DAO=∠BFA=90°
∴Rt△AOD∽Rt△FBA
∴
又在矩形ABCD中,AB=8,AD=3,則OA=4,
∴
∴可設(shè)AF=3x,BF=4x
在Rt△ABF中,AB2=AF2+BF2
82=(3x)2+(4x)2
解得,x1=,x2=-(舍)
即BF=
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】九年級(1)班全班50名同學(xué)組成五個(gè)不同的興趣愛好小組,每人都參加且只能參加一個(gè)小組,統(tǒng)計(jì)(不完全)人數(shù)如下表:
編號 | 一 | 二 | 三 | 四 | 五 |
人數(shù) | 15 | 20 | 10 |
已知前面兩個(gè)小組的人數(shù)之比是.
解答下列問題:
(1) .
(2)補(bǔ)全條形統(tǒng)計(jì)圖:
(3)若從第一組和第五組中任選兩名同學(xué),求這兩名同學(xué)是同一組的概率.(用樹狀圖或列表把所有可能都列出來)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC是等腰直角三角形,∠ACB=90°,點(diǎn)E、F分別是邊BC、AC的中點(diǎn),P是AB上一點(diǎn),以PF為一直角邊作等腰直角三角形PFQ,且∠FPQ=90°,若AB=10,PB=1,則QE的值為( 。
A. 3 B. 3 C. 4 D. 4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,是直徑,于點(diǎn),連接交于點(diǎn),過點(diǎn)作的切線交于點(diǎn),連接交于點(diǎn)
(1)求證:
(2)連接并延長,交于點(diǎn),填空:
①當(dāng)的度數(shù)為_________時(shí),四邊形為菱形;
②當(dāng)的度數(shù)為__________時(shí),四邊形為正方形;
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,tan∠BACtan∠ABC=1,⊙O經(jīng)過A、B兩點(diǎn),分別交AC、BC于D、E兩點(diǎn),若DE=10,AB=24,則⊙O的半徑為( )
A.B.
C.13D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某電視臺在它的娛樂性節(jié)目中每期抽出兩名場外幸運(yùn)觀眾,有一期甲、乙兩人被抽為場外幸運(yùn)觀眾,他們獲得了一次抽獎的機(jī)會,在如圖所示的翻獎牌的正面4個(gè)數(shù)字中任選一個(gè),選中后翻開,可以得到該數(shù)字反面的獎品,第一個(gè)人選中的數(shù)字第二個(gè)人不能再選擇了.
(1)如果甲先抽獎,那么甲獲得“手機(jī)”的概率是多少?
(2)小亮同學(xué)說:甲先抽獎,乙后抽獎,甲、乙兩人獲得“手機(jī)”的概率不同,且甲獲得“手機(jī)”的概率更大些.你同意小亮同學(xué)的說法嗎?為什么?請用列表或畫樹狀圖分析.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某市精準(zhǔn)扶貧工作已經(jīng)進(jìn)入攻堅(jiān)階段,貧困的張大爺在某單位的幫扶下,把一片坡地改造后種植了大櫻桃.今年正式上市銷售,在銷售30天中,第一天賣出20千克,為了擴(kuò)大銷量,在一段時(shí)間內(nèi)采取降價(jià)措施,每天比前一天多賣出4千克.當(dāng)售價(jià)不變時(shí),銷售量也不發(fā)生變化.已知種植銷售大櫻桃的成本為18元/千克,設(shè)第天的銷售價(jià)元/千克,與函數(shù)關(guān)系如下表:
表一
天數(shù) | 1 | 2 | 3 | …… | …… | 20 |
售價(jià)(元/千克) | 37.5 | 37 | 36.5 | …… | …… | 28 |
表二
天數(shù) | 21 | 22 | …… | …… | 30 |
售價(jià)(元/千克) | 28 | 28 | …… | …… | 28 |
(1)求與函數(shù)解析式;
(2)求銷售大櫻桃第幾天時(shí),當(dāng)天的利潤最大?最大利潤是多少?
(3)銷售大櫻桃的30天中,當(dāng)天利潤不低于
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形ABCD中,AB=3,BC=4,將對角線AC繞對角線交點(diǎn)O旋轉(zhuǎn),分別交邊AD、BC于點(diǎn)E、F,點(diǎn)P是邊DC上的一個(gè)動點(diǎn),且保持DP=AE,連接PE、PF,設(shè)AE=x(0<x<3).
(1)填空:PC= ,FC= 。(用含x的代數(shù)式表示)
(2)求△PEF面積的最小值;
(3)在運(yùn)動過程中,PE⊥PF是否成立?若成立,求出x的值;若不成立,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,是的直徑,是上半圓的弦,過點(diǎn)作的切線交的延長線于點(diǎn),過點(diǎn)作切線的垂線,垂足為,且與交于點(diǎn),設(shè),的度數(shù)分別是.
用含的代數(shù)式表示,并直接寫出的取值范圍;
連接與交于點(diǎn),當(dāng)點(diǎn)是的中點(diǎn)時(shí),求的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com