【題目】如圖,在等邊, 分別是邊上的點,且 , ,點與點關于對稱,連接,.

(1)連接,則之間的數(shù)量關系是 ;

(2)若,求的大小(用的式子表示)

(2)用等式表示線段之間的數(shù)量關系,并證明.

【答案】(1);(2)(3)

【解析】分析: 1)連接,,易證是等邊三角形,則根據(jù)點與點關于對稱,則根據(jù)等量代換可知;

(2)根據(jù),求出.因為點與點關于對稱,得到,..,在以為圓心,為半徑的圓上.根據(jù)圓周角定理有.

3.理由如下連接,延長,交于點,證明,

得到.根據(jù),即可得到.

1

(2)如圖:

是等邊三角形,

.

,

.

∵點與點關于對稱,

,.

.

由(1)知.

,在以為圓心,為半徑的圓上.

.

3.理由如下:

連接,延長,交于點,

是等邊三角形,

,.

∵點與點關于對稱,

,.

.

.

,

.

.

.

.

由(2)知.

.

,.

四邊形中,.

.

是等邊三角形.

,.

,

.

中,

.

.

,

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖1是小明制作的一副弓箭,點A,D分別是弓臂BAC與弓弦BC的中點,弓弦BC=60cm.沿AD方向拉弓的過程中,假設弓臂BAC始終保持圓弧形,弓弦不伸長.如圖2,當弓箭從自然狀態(tài)的點D拉到點D1時,有AD1=30cm,B1D1C1=120°.

(1)圖2中,弓臂兩端B1,C1的距離為_____cm.

(2)如圖3,將弓箭繼續(xù)拉到點D2,使弓臂B2AC2為半圓,則D1D2的長為_____cm.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在正方形ABCD中,對角線BD所在的直線上有兩點E、F滿足BE=DF,連接AE、AF、CE、CF,如圖所示

(1)求證:△ABE≌△ADF;

(2)試判斷四邊形AECF的形狀,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,反比例函數(shù)y=(x<0)的圖象經(jīng)過點A(﹣2,2),過點AABy軸,垂足為B,在y軸的正半軸上取一點P(0,t),過點P作直線OA的垂線l,以直線l為對稱軸,點B經(jīng)軸對稱變換得到的點B′在此反比例函數(shù)的圖象上,則t的值是________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知拋物線l:y=(x﹣h)2﹣4(h為常數(shù))

(1)如圖1,當拋物線l恰好經(jīng)過點P(1,﹣4)時,lx軸從左到右的交點為A、B,與y軸交于點C.

①求l的解析式,并寫出l的對稱軸及頂點坐標.

②在l上是否存在點D,使SABD=SABC若存在,請求出D點坐標,若不存在,請說明理由.

③點Ml上任意一點,過點MME垂直y軸于點E,交直線BC于點D,過點Dx軸的垂線,垂足為F,連接EF,當線段EF的長度最短時,求出點M的坐標.

(2)設l與雙曲線y=有個交點橫坐標為x0,且滿足3≤x0≤5,通過l位置隨h變化的過程,直接寫出h的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在△ABC中,ABAC5,cos∠ABC,將△ABC繞點C順時針旋轉,得到△A1B1C

1)如圖,當點B1在線段BA延長線上時.求證:BB1∥CA1;△AB1C的面積;

2)如圖,點EBC邊的中點,點F為線段AB上的動點,在△ABC繞點C順時針旋轉過程中,點F的對應點是F1,求線段EF1長度的最大值與最小值的差.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖①,菱形ABCD中,AB=5cm,動點P從點B出發(fā),沿折線BC﹣CD﹣DA運動到點A停止,動點Q從點A出發(fā),沿線段AB運動到點B停止,它們運動的速度相同,設點P出發(fā)xs時,△BPQ的面積為ycm2已知yx之間的函數(shù)關系如圖②所示,其中OM,MN為線段,曲線NK為拋物線的一部分,請根據(jù)圖中的信息,解答下列問題:

(1)當1<x<2時,△BPQ的面積________(填不變”);

(2)分別求出線段OM,曲線NK所對應的函數(shù)表達式;

(3)當x為何值時,△BPQ的面積是5cm2?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】(2017浙江省嘉興市,第20題,8分)如圖,一次函數(shù))與反比例函數(shù)的圖象交于點A(﹣1,2),Bm,﹣1).

(1)求這兩個函數(shù)的表達式;

(2)在x軸上是否存在點Pn,0)(n>0),使ABP為等腰三角形?若存在,求n的值;若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】一手機經(jīng)銷商計劃購進華為品牌型、型、型三款手機共部,每款手機至少要購進部,且恰好用完購機款61000.設購進型手機部,型手機.三款手機的進價和預售價如下表:

手機型號

進價(單位:元/部)

預售價(單位:元/部)

1)求出之間的函數(shù)關系式;

2)假設所購進手機全部售出,綜合考慮各種因素,該手機經(jīng)銷商在購銷這批手機過程中需另外支出各種費用共1500元.

①求出預估利潤W(元)與x(部)之間的關系式;

(注;預估利潤W=預售總額購機款各種費用)

②求出預估利潤的最大值,并寫出此時購進三款手機各多少部.

查看答案和解析>>

同步練習冊答案